

Loren R. Anderson RAC Engineers & Economists Utah State University

Introduction

- Focus today on Risk Assessment for Failure Modes associated with Earthquake Induced Liquefaction
- Risk Assessment Process
- Risk Assessment Criteria
- Examples involving liquefaction
- Conclusions

Risk Assessment Process

- Loading Conditions Consider a Full Range of Loading
 - Flood
 - Earthquake
 - Normal operating (may be included with Flood Loading)
- Potential Failure Modes Analysis
 - Identify Credible and Significant PFMs
 - Must understand the Failure Mode
 - Detailed description
- Event Tree Risk Model
- Probability and Consequences of Failure
- Evaluate against criteria
- Repeat for all Risk Reduction Measures

USACE Tolerable Risk Guidelines - Existing Dams A) LIMIT GUIDELINES that should not be exceeded regardless of

cost except in exceptional circumstances:

1) Annual Probability of Failure (APF) < 1 in 10,000 per yr

2) Individual Risk (IR)

Probability of life
loss for the most
exposed individual

= APF if assume
24x7 presence below
dam

4) Annualized Life Loss (ALL) – Av. annual life loss < 0.001 lives/yr

B) ALARP (As Low As Reasonably Practicable) considerations:
 1) Level of risk compared with Limit Guidelines; 2&3) Cost effectiveness of further risk reduction below the Limit Guidelines (BCR, CSSL, Disproportionality); 4) Essential USACE guidelines; and 5) Consultation.

RAC Engineers & Economists

Portfolio Risk Assessment

 $a_{n-1} - a_n$

Seismic Loading

- Consider two magnitude ranges
 - M 5.75 (background)
 - M 8.0 (San Andreas & others)

Earthquake	e Loading		
Event Prob	ability		
pga	Total Haz	San Andreas	Background
(g)			
0.05	0.05	0.007	0.043
0.1	0.007	0.00052	0.00648
0.15	0.002	0.000083	0.001917
0.2	0.00082	0.000016	0.000804
0.25	0.00041		0.00041
0.3	0.00022		0.00022

Earthquake event tree

 $a_{n-1} - a_n$

a₁ - a₂

LIQUEFACTION RESISTANCE OF SOILS: SUMMARY REPORT FROM THE 1996 NCEER AND 1998 NCEER/NSF WORKSHOPS ON EVALUATION OF LIQUEFACTION RESISTANCE OF SOILS^a

By T. L. Youd,¹ Chair, Member, ASCE, I. M. Idriss,² Co-Chair, Fellow, ASCE, Ronald D. Andrus,³ Ignacio Arango,⁴ Gonzalo Castro,⁵ John T. Christian,⁶ Richardo Dobry,⁷ W. D. Liam Finn,⁸ Leslie F. Harder Jr.,⁹ Mary Ellen Hynes,¹⁰ Kenji Ishihara,¹¹ Joseph P. Koester,¹² Sam S. C. Liao,¹³ William F. Marcuson III,¹⁴ Geoffrey R. Martin,¹⁵ James K. Mitchell,¹⁶ Yoshiharu Moriwaki,¹⁷ Maurice S. Power,¹⁸ Peter K. Robertson,¹⁹ Raymond B. Seed,²⁰ and Kenneth H. Stokoe II²¹

FIG. 2. SPT Clean-Sand Base Curve for Magnitude 7.5 Earthquakes with Data from Liquefaction Case Histories (Modified from Seed et al. 1985)

$$\text{CSR} = (\tau_{av}/\sigma'_{vo}) = 0.65(a_{max}/g)(\sigma_{vo}/\sigma'_{vo})r_d$$

$$FS = (CRR_{7.5}/CSR)MSF$$

Probability of Liquefaction

- □ Liao, et al (1988)
- □ Youd and Noble (1998)
- □ Seed, et al. (2001)
- Sequence leading to breach
 - Liquefaction
 - Stability
 - Breach

Liquefaction Models

Fig. 5: Comparison of Best Available Probabilistic Correlations for Evaluation of Liquefaction Potential (All Plotted for M_w=7.5, σ_v' = 1300 psf, and Fines Content ≤ 5%)

Liquefaction Spread Sheet

Annual Probabil	lity of Liquefactio	on Calculations												
CSR parameter	S													
r _d =	0.9		(N1) ₆₀ =	33.1	For Silty S	and (N1) ₆₀ mu	st be corre	oted						
Stress Ratio =	1.35		M _w =	6.5	Magnitude	is only directly	/ considere	d in the equation t	by Youd and N	loble				
			MCF =	1.19	Magnitude	Correction Fa	ictor applied	d to CSR for Liao i	method MCF =	: 1.0 for M7	.5, 1.19 for	M6.5		
						V	oud and No	ble (1996) Equatio	n	Liao et al. (1988) Equation modified for Magni			for Magnitude	
											usi	ng the MCF		
Loading		Annual		Averade				_	_	Modified		_	_	
(pga)	Return Perio	Exceedance Prob	Probability Interval	pga	CSR	In[PL/(1-PL)]	PL/(1-PL)	P _{L/E}	P _{L per year}	CSR	QL	P _{L/E}	P _{L per year}	
0.010	144	0.006944444												
			0.004839	0.0188	0.014847	-14.5423313	4.83E-07	4.83443E-07	2.3395E-09	0.012477	-25.0048	1.38213E-11	6.68839E-14	
0.027	475	0.002105263												
			0.00108	0.0352	0.027799	-12.60117	3.37E-06	3.36806E-06	3.6362E-09	0.023361	-20.953	7.94763E-10	8.58043E-13	
0.043	975	0.001025641												
			0.000622	0.0595	0.04699	-10.976502	1.71E-05	1.70985E-05	1.0628E-08	0.039488	-17.5618	2.36059E-08	1.46734E-11	
0.076	2475	0.00040404	0.000000	0.4400	0.000400	0.00400007	0.000404	0.000404400	0.55455.00	0.074007	40.4000	4 470545 00	4 000405 40	
0.450	0400	0.000447005	0.000286	0.1129	0.089163	-8.99406267	0.000124	0.000124129	3.5515E-08	0.074927	-13.4238	1.47954E-06	4.23319E-10	
0, 150	8480	0.000117925	0.000110	0.45	0 110462	0 11/6667/	0.000200	0.00030003	2 50625 00	0.000549	11 5000	0.07402E.06	1 002725 00	
			0.000110	0.15	0.110405	-0.11400074	0.000299	0.00029903	3.0203E-00	0.099040	-11.3002	9.27403E-00	1.09575E-09	
									Sum PL your					
									= =	8.74E-08			Sum P _{L Liao} =	1.53E-09
											Parameter	s Used		
Delaware Lake				PGA	SRP		PGA	AEP			(N1) ₆₀ =	33.1		
RP	PGA	AEP		0.0188	4.83E-07		0.010	6.94E-03			M _w =	6.5		
144	0.010	0.006944444		0.0352	3.37E-06		0.0272	2.11E-03			MCF =	1.19		
475	0.027	0.002105263		0.0595	1.71E-05		0.0432	1.03E-03						
975	0.043	0.001025641		0.1129	1.24E-04		0.0758	4.04E-04						
2475	0.076	0.00040404		0.15	2.99E-04		0.15	1.18E-04						

Earthquake event tree

 $a_{n-1} - a_n$

a₁ - a₂

Earthquake event tree

- Annual Probability for a given PGA range
- Given the PGA range the conditional probability of liquefaction can be determined
- 3. Given Liquefaction determine the conditional probability of a slope failure
- 4. Given the slope failure determine the conditional probability of a breach
 Percent for all PCA ranges
- 5. Repeat for all PGA ranges

- Expanded Chance Node
- Collapsed Chance Node
- ◀ Consequences Node

Risk Assessment of Success Dam, California

June 26-28, 2011 Atlanta, GA

• Evaluation of Operating Restrictions as an Interim Measure to Mitigate Earthquake Risk

GEORISK 2011

- Flood Related Potential Failure Modes
- Earthquake Induced Potential Failure Modes

David Bowles Loren Anderson

Michael Beaty

Michael Ruthford Vlad Perlea David Serafini Jack Montgomery

US Army Corps of Engineers BUILDING STRONG®

SUCCESS DAM CALIFORNIA

Embankment dam 144 feet (44 m) high Central clayey core, pervious shells Founded on alluvial deposit

Cross-Valley Geologic Profile

Context: Impact Cost of Operating Restrictions in 2004\$

- 1) Agricultural losses associated with reductions in irrigation water
- 2) Increased flood damages in an historic terminal lake, Tulare Lake agricultural area.
- 3) Net recreational losses, allowing for shifts to other lakes in the region

\$2.1 m for OR.630 and OR.640 \$2.8 m for OR.580, OR.600 and OR.620

Table 1. Estimated Economic Losses to Downstream Agricultural Interests

Potential		Representative Water Year						
Operating	Very Dry	Dry	Below Average	Average	Wet	Economic		
Restriction	1976	1964	1985	1996	1980	Losses (\$/year)		
OR 640	\$0	\$0	\$0	\$940,660	\$1,065,050	\$401,142		
OR 630	\$0	\$0	\$635,810	\$2,014,530	\$2,152,920	\$960,652		
OR 620	\$0	\$0	\$1,420,440	\$2,836,050	\$2,952,250	\$1,441,748		
OR 600	\$878,220	\$1,038,240	\$2,590,700	\$3,940,300	\$3,797,220	\$2,448,936		

Table 2. Estimated Additional Flood Damages to Agricultural Lands in Tulare Lakebed

Potential		Average Annual				
Operating	Very Dry	Dry	Below Average	Average	Wet	Additional Flood
Restriction	1976	1964	1985	1996	1980	Damages (\$/year)
OR 640	\$0	\$0	\$0	\$0	\$3,100,000	\$620,000
OR 630	\$0	\$0	\$0	\$0	\$3,100,000	\$620,000
OR 620	\$0	\$0	\$0	\$0	\$3,200,000	\$640,000
OR 600	\$0	\$0	\$0	\$0	\$7,500,000	\$1,500,000

Seepage and Piping Failure Modes

- 1. Piping into Terrace Deposits Left Abutment Failure
- 2. Piping into Rock Right Abutment Failure
- **3.** Piping through Rock Foundation Failure
- 4. Piping through Embankment Failure
- 5. Piping through Foundation in Older Alluvium Failure
- 6. Embankment Piping along Outlet Works Failure

Earthquake Failure Modes - Liquefaction in Recent Alluvium and Upstream Shell

Earthquake Failure Modes

- Liquefaction leading to vertical crest deformation and failure by Above-Core Erosion (ACE) of the dam.
- 2) Liquefaction leading to embankment deformation and failure by Seepage Erosion through Cracks (SEC).
- Liquefaction leading to embankment and tower deformation resulting in failure by piping into a rupture in the control tower outlet works system, referred to as a Towerinduced Piping (TIP) failure.

Delayed failure from loss of outlet works

Delayed Failure

Results of Probabilistic Seismic Hazard Analysis

BUILDING STRONG_®

Method of Analysis

Fast Lagrangian Analysis of Continua

Models used in the dynamic shaking simulation

BUILDING STRONG®

Selected parameter to represent earthquake damage: Seismic settlement at crest as a function of: PGA, M, and pool elevation

Smoothed Seismic settlement at crest as a function of: PGA, M, and pool elevation

RAC Adjusted Values (2/24/09)

Earthquake Event Tree For $< M_{0.5}^{0.5}, M_{0.5}^{0.5} - 7 \& > M_{0.5}^{0.5}$

Above-Core Erosion (ACE) Failure Mode

Failure Path:

•The embankment deforms due to strength loss of the foundation due to liquefaction.

•The top of the core is lowered below the pool elevation leading to saturation of the downstream shell.

BUILDING STRONG_®

Seepage Erosion through Cracks (SEC) and Tower-induced Piping (TIP) Failure Modes

- Used Event Tree Method Guided by the USACE Piping and Seepage Toolbox
- All estimates made by Engineering Team
- Loss of Outlet control

Event Tree for Estimating Individual Conditional Probabilities of a SEC Failure

- \checkmark Initiation Flaw exists⁽¹⁾
 - ✤ Initiation Erosion starts
 - Solution Continuation Unfiltered exit exists (consider: no erosion/some erosion/excessive erosion/continuing erosion)
 - ✤ Progression Roof forms to support a pipe
 - ✤ Progression Upstream zone fails to fill crack
 - ✤ Progression Upstream zone fails to limit flows
 - ✤ Intervention fails
 - Solution Dam breaches (consider all likely breach mechanisms)
 - Sconsequences occur

Delayed Failure

Estimated Life Loss

Earthquake Failure Modes

Flood and Flood-internal Failure Modes and Flood No Failure

Breach- Inundation Case	Failure Modes	Exposure Case	Warning Time Adjustment (ΔWT)	To (1 + 4 PAR	tal + 6) Life Loss	Average Fatality Rate
			(IIIIIIS)			
E.590	SEC, TIP and ACE	Day	> 200	48,508	9.4	0.0002
		Night	> 200		9.4	0.0002
E.630	SEC, TIP and ACE	Day	> 200	49,485	9.9	0.0002
		Night	> 200		9.9	0.0002
E.FP	SEC, TIP and ACE	Day	-30	61,821	310.4	0.0050
		Night	-60		599.4	0.0097
	SEC, TIP and ACE	Day	90	61,821	195.7	0.0032
		Night	60		203.9	0.0033
	SEC, TIP and ACE	Day	> 200	61,821	18.7	0.0003
		Night	> 200		18.7	0.0003
	ACE	Day	-45	61,821	451.4	0.0073
		Night	-60		599.4	0.0097

Breach-	Failura Modes	Exposure	Warning Time	То	tal	Average
Case	ranure wodes	Case	(ΔWT) (mins)	PAR	Life Los	Rate
F.PMF	All Flood & Flood-	Day	> 200	115,176	27.5	0.0002
	internal	Night	> 200		27.5	0.0002
F.FP		Day	> 200	61,821	12.4	0.0002
		Night	> 200		12.4	0.0002
F.630		Day	> 200	49,485	9.9	0.0002
		Night	> 200		9.9	0.0002
F.590		Day	> 200	48,508	9.4	0.0002
		Night	> 200		9.4	0.0002
F.PMF NF	No Failure	Day	> 200	56,793	12.8	0.0002
		Night	> 200		12.8	0.0002
F.FP NF		Day	> 200	Not available	0.0	0.0000
		Night	> 200		0.0	0.0000
F.630 NF		Day	> 200	Not available	0.0	0.0000
		Night	> 200		0.0	0.0000
F.590 NF		Day	> 200	Not available	0.0	0.0000
		Night	> 200		0.0	0.0000

Economic Consequences of Dam Failure

Estimated flood damages to agricultural lands in Tulare Lakebed

	Broach Casa	Breach	Flood Damages	
Arthouse the second sec	Diedcii Case	Run	(\$M)	
Station	E.590 EQ Failure	E.590	7	
	E.630 EQ Failure	E.630	14	
	Full Pool EQ Failure	E.FP	31	
STADUTO EM Z	PMF Failure	F.PMF	56	
and i i for	PMF No-Failure	F.PMF NF	45	
A Corracan vi	podville			
	East Porterville	E	stimated eco	nomic
Winner Martin	Тегбанена		damages (\$M) to
		gricult	ure and stru	ictures

		Consequence Center								
Breach Case	2) Eastern Porterville Area	3) Western Porterville Area	4) Tulare County	5) Corcoran	6) Kings County					
E.590	187	59	264	0.6	7.6					
E.630	560	91	669	0.7	15					
E.FP	625	74	725	1.0	33					
F.PMF	895	125	1,051	3.0	3.2					
F.PMF NF	421	91	529	0.8	0.9					

Other Recent Applications

Ash Piles at a TVA Power Plant

- EQ Induced Liquefaction
- Static Liquefaction
- Mine Closure in the Yukon
 - Tailings Dams
 - Containment Dikes

Important lingering questions

- Importance of establishing a Threshold Earthquake Load
- Mean strength values are used for probabilistic slope stability analysis
- Selection of (N1)60 values for probabilistic liquefaction analysis
- Thickness of the liquefiable layer Keaton and Anderson