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Show Canterbury Video



wMechanism of liquefaction.

Before earthquake During earthquake After earthquake
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Flow (static) Liquefaction

Strain softening response 1n undrained
shear

Trigger mechanism required

Static shear stress greater than mmimum
(liquefied) undrained shear strength
Kinematic mechanism required

— Uncontained flow

— Contained deformation




Flow (static) liquefaction
steeply sloping ground

Sites defined as:

Steeply sloping (> 5 degrees) or earth embankments
(e.g. dams)

Sequence to evaluate flow liquefaction:

Evaluate susceptibility for strength loss
Evaluate stability using post-earthquake shear
strengths

Evaluate trigger for strength loss

If soils are susceptible, and instability possible, it is often prudent
fo assume trigger will occur
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Estimates of Residual Shear Strength from SPT-
N Data
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Estimates of Residual Strength
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Key Elements in Liguefaction Studies

(T Assessment of the likelihood of "triggering”
or inttiation of soil liguefaction.

v

(2. Assessment of postdiguefaction strength and
overall post-liguefaction stability.

v

3. Assessment of expected liquefaction-induced
deformations and displacaments,

<; 4. Assassment of the consequencas of these )
deformations and displacements.

G Implementation (and evaluation) of engineered
mitigation, if necessary.

After Seed et al. 2001



Demand vs Resistance Capacity
For Sands

Demand — PGA and Seismic Shear Stresses

Simplified Method and or Site Response Analysis

Resistance Capacity - -in situ tests — SPT, CPT, Vs

Extreme Measures -Test samples cored from frozen ground



Cyclic Shear Stress Ratio

The Simplified Approach estimates average cyclic
shear stress ratios (CSR) caused by earthquake
shaking using:

_ dmax  Ovo g
CSR =0.65 g v MSF

Alternative approach is to do site response analyses.



Stress Reduction Coefficient rd
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Magnitude Dependent Stress Reduction Coefficient

Stress reduction coefficient, r,
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Liquefaction resistance curves for M=7.5 by Youd
and Idriss& Boulanger procedures
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Note that the differences in rd makes little difference in results.
Correlation with data takes care of it.



Magnitude Scaling Factors-MSF - 2001
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MSF from Idriss and Boulanger (2008)

MSF = min of [6.9exp( "W/, ) -0.058] or 1.8



Comparison of Youd et al. (2001) and Idriss &
Boulanger (2008) Magnitude Scaling Factors
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Liguefaction resistance curves for M=6.0 by Youd
and ldriss& Boulanger procedures
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Variations of K, with SPT & CPT Data
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Site Response Analysis for

1. Determination of PGA
and
2. Cyclic shear stresses

his is a developing trend. It Is very
prevalent in Vancouver.

Is this the best approach? Much better
than the Simplified Method?
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Turkey Flat Instrument Layout
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Site Response to Outcrop Input Motions
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Red curve is recorded response - other colors are predictions very
bad predictions.
Probability of liquefaction would be seriously over-estimated.



Predictions using recorded motions at D
at base of soil column. VGood Results
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Caution on using site response analysis
to get acceleration (PGA) or shear
stresses.

Remember that all the liquefaction
assessment charts were developed using
shear stresses computed using the
simplified equation.

See comments on getting PGA In next slide



PGA for Simplified Method

“The formal assessment of liquefaction at
a site using the simplified procedure
should be based on the a,,, that is
estimated to develop in the absence of
soll softening or liguefaction.”

Boulanger and Idriss, 2014
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Validation of analytical methods 1

Prediction Exercise 1; Element Tests

Saada and Bianchini (1988) prediction exercise
demonstrated that ability of a model to simulate element
tests is no guarantee of how it will perform in other
element stress fields with different stress paths. Models
need to be calibrated for the dominant stress paths
expected in application as far as is possible with the
conventional tests used in engineering practice.
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Centrifuge Tests

The centrifuge test with artificial gravity
20g- 60 g can create stresses In a
relatively small model that are
representative of the stresses in the
field.

Also by creating slopes or introducing
structures into soil model we can create
Inhomogeneous stress states. These
pose greater challenges for soil models.
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Validation of analytical methods 2

Prediction Exercise 2; Centrifuge Tests

Smith (1994) warned about this in his discussion of the
VELACS project which evaluated how well different
constitutive models predicted the results of centrifuge
tests: “A particularly insidious feature of the calibration
process is that a predictor could calibrate his/her model
to fit the bulk of the (largely triaxial) data provided in the
information package and still make poor predictions of
seismically induced stress paths”



Shear Stress T, kPa
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Shear stress T kPa

Case for Water Pluviation
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Effect of Loading Path on Stress- Strain Response

100

Toyura sand D,=39-41%, b=0.5

Shear stress, T = (0, — 0,)/2 (kPa)

Shear strain, y=¢€, — &, (%)

For liguefaction field studies use cyclic simple shear test data to calibrate
computational model in computer program, if possible.



Resistance Capacity
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Development of SPT liquefaction triggering
criterion CSR 2 CRR

Ohsaki 1964 — Whitman1970 — Seed 1976
Seed et al 1985

Youd et al 2001 State of Practice

ldriss and Boulanger,EERI Manual 2008
and associated seminar program leads to
controversy and formation of NSF Committee
to resolve issues by developing an acceptable
new state of practice.




SPT- Liguefaction Assessment Chart
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CPT - Liguefaction Assessment Chart
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Soil Behavior Chart by Robertson

1,000 A
& 9 4
% -
g
w 100 p -
7 C :
L r ]
'F‘%' - -
D o -
c
ju] o
&
3
N 10
o
5
=z
1
1. Sensitive, fine grained 6. Sands - clean sand to silty sand 0.1 1 10
2. Organic soils - peals 7. Gravelly sand lo dense sand . oy .
3. Clays - silty clay to clay 8. Very stiff sand to clayey sand * Normalized friction ratio, F

4. Silt mixtures - clayey silt to silty clay 9. Very stiff, fine grained *
5. Sand mixtures - silty sand to sandy sift

* Heavily overconsidated or cemented



Depth (m)

Evaluation of Liquefaction Potential at a Site
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Moss Landing - Lateral Spread
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Marine Lab
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UC 8 NCEER

Ligucfaction sssessment resalts (NCIZR 2001)
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UC 14 NCEER (R&W) Method

Liguefaction assessment results (NCEER 2001)
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L_ocations of Liquefaction Testing
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Vs-based Liquefaction correlation for clean
uncemented sands (after Andrus & Stokoe 2000)
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Velocity Vs by Inversion of Ambient Motions
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Liquefaction Triggering by Downhole V,
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Liquefaction Triggering using Ambient V,
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CRR for Fine Grained Plastic Solls

1.The direct method using cyclic loading tests on
high quality samples.

Otherwise:

2.Measure the monotonic undrained shear
strength, S, in situ (Vane shear test or from CPT)
or by test on high quality samples or

3.Estimate Su based on the stress history of the soll
profile

Then estimate CRR from Su by empirical
methods



Evaluating CRR for Fine Grained Plastic Soils

The cyclic shear stress 1, is 65% of the peak shear stress
as for sand but the ratio

CRRM =75~ (Tcyc/Su)N =30 (SU/O'iVC)

(Teye/Sun = 30 IS evaluated from a substantial data base for N = 30 cycles
when M = 7.5,
The value 0.83 was selected for clay-like soils
subjected to direct simple shear loading conditions.
This value may change as more data as more data becomes available.

For the present, CRR is given by

CRR,,, = 0.83 (S /0',.)

clay
If a correction factor C,, = 0.96 is included to represent
the fact that motions occur in the field in two directions then:

CRR,,, = 0.8 (S /o',,)

clay



Bjerrum Vane Shear Correction Factor
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Magnitude Scaling Factors for Sands and Clays
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Slope Correction Factor Ka for Plastic Soils
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The challenge of probabilistic ground
motions

The simplified method is based on an
associated M and Acceleration

Probabiliistic accelerations result from
contributions of all magnitudes between
considered Mmin and Mmax. So how do you
employ the simplified method?

Serious implications also for lateral spreading
and settlement. Discussed later.



Magnitude-distance deaggregation for NBCC 2005
PGA in Vancouver
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Liquefaction hazard curve weighted for magnitude M = 7.5
First proposed by Idriss, 1984.
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Magnitude-distance deaggregation for NBCC 2005
PGA in Vancouver
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Liquefaction potential for various (Ny)g, .s Values and
seismic site conditions, using Youd et al. (2001)
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Maximum cyclic shear strain V¢, FS and D,
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Expected lateral spreading displacement

Zmax
LDI = ]o VnaxdZ

(S+0.2)LDI, ground slope case
DH=1_..,-0.8
oW LDI, free face case




Variation of volumetric strain with relative density,
SPT and CPT resistance, and FS against liquefaction
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Yertical settlement {cm)
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Measured versus predicted displacements
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Lateral Displacement Equation

Youd’s Equation:

logDh=bo+bt Mw+b2log R"+bsR+bslog W+bslog S
+ bs log T15 + by log(100-F15) + bs log(D3015+0.1 mm)




Determining equivalent source distance
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Input parameters for school project

Input Parameters
D50,5 (mm) 0.25

F1s (%) 5

T15 (M) 3

S (%) 4

M 7

Accelerations for calculating D
Acceleration for Calculating D Distance, D | Lateral Displacement

(km) (m)
0.20g Avg. Hazard Acceleration, € = 0 D=25 0.54
0.35¢ Site Response Analysis D=12 1.79
0.46g Code Acceleration (Site Class C) D=6 4.10




Magnitude Bins

5.1
5.3
5.5
5.7
5.9
6.1
6.3
6.5
6.7
6.9
71
7.3
i5
7.7
7.9
8.1
8.3
8.5
8.7
8.9

Sample calculation of lateral spreading
displacements using the deaggregation method

Distance Bins

2.5 75 12.5 175 225 275 325 375 425 475 525 575 625 675 197.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0001 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0004 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.0008 0.0001 0 0 0 0 0 0 0 0 0 0 0 0
0 00013 0.0003 0 0 0 0 0 0 0 0 0 0 0 0
0 00038 0.0007 0.0002 0 0 0 0 0 0 0.0001 0 0 0 0
0 00076 00017 00004 0.0001 0 0 0 0 0 0.0002 0.0002 0.0001 0 0
0 001¢5 00033 0.0011 0.0003 0.0001 0 0 0 0 0.0005 0.0004 00003 0.0002 0
0 00256 0.0082 0.0026 00003 0.0004 0.0001 0 0 0 00003 0.0008 0.0005 0.0004 0
0 00421 0016 00057 00021 0001 0.0004 00002 0.0001 0 0.0003 00008 00005 O0.0004 0
0 0064 00251 0013 00043 00024 0.001 00005 00003 0.0001 0 0 0 0 0
0 00837 004587 0.0227 00102 00053 0.0024 0.001¢ 0.0008 0.0004 0.0002 0.0001 0 0 0
0 00534 0.0374 0.013¢ 00035 0.0053 0.0026 0.0015 00003 0.0004 0.0003 0.0002 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

Row Totals:

0

0
1E-04
4E-04
9E-04
0.002
0.005
0.01
0.021
0.041
0.071
0.114
0.182
0.137

(= — R — B — i — B



Using Different Methods

800 -

" mBartlett and Youd (2002)
700 1 M Robertson (1998)/Zhang (2004)

W |driss and Boulanger (2008) 620

600

500 473

400

300

200

100

3769-1 3769-2 3769-3 3769-4 3769-5 3769-6



Calculated displacements for the school site in Delta

130
m Averase Acceleration Method
1ed B Ceassresstion Method
140 m Youd et al. [2001) with I based on amax=0.35g

Displacermant (m)
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Closing the Loop

It is the usual procedure in the School Retrofit Program
for the Geotechnical and Structural Engineers get
together with at least two members of the Technical
Review Board to decide how to deal with the
consequences of Liquefaction in the most economical
way.

An example of this cooperation follows for a particular
school. The Structural Engineer involved is John
Sherstobitoff, Ausenco Company, Vancouver, BC. The
slides are abstracted from a recent presentation he made
on the School Project.
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Seismic Retrofit Guidelines, 2" Edition
November 4t 2013

MANUAL VOLUME NO. 11

LIQUEFACTION GUIDELINES

Structural Engineering Guidelines for the
Performance-based Seismic Assessment and Retrofit of

Low-rise and Mid-rise British Columbia Buildings

W.D. Liam Finn, A. Wightman, John Sherstobitoff and Jason
Dowling




Liquefaction Design Example with Performance Limits

Building Description
— One storey mixed concrete and steel framed structure

— LDRS Concentric braced frame
(Tension-Compression moderately ductile)
« DDL: 2.5%
— VLS Exterior: Non-ductile concrete columns
« DDL: 1.25%
— VLS Interior/Exterior: Steel columns
« DDL: 4%
— Liquefaction Drift Limit
« LDL: 4% or 2.5% * lesser of the two
« *if liquefaction effects can cause such deformation
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Effects of Lateral Spreading

AH

/:“\ //‘\\ //‘\\

<=] T | T )

F \ /‘(“ j % L/

h /«—— LDRSor VLS Connections —|
(a) (b) (c) (d)
A4

_ C C o C o

Non Liquefiable Crust
Liquefiable Soil

Non Liquefiable Strata

School building on liquefied soil. Foundations not tied together.
What relative displacement to assign to crack?



Loads from Lateral Spreading on Retrofitted

Foundation
L i » }] e }| Pe
Passive
pressure
[4
U&L’ SRR~ i I B e E|
<:| ‘_P:‘l;vu{_ : T\ New tonsion fiafs) / Non Liquefiable Crust
Liquefiable Soil
Non Liquefiable Strata

Investigate critical bay for crack location



Liquefaction Drift Limit (LDL)

« Drift Components due to liquefaction
— Residual drift (RD)
— Effective drift demand due to lateral soil spreading (EDH)
— Effective drift demand due to vertical soil settlement (EDV)

. RD + EDH +

AH

> +—AH _ F.|

< LDL
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Example from Christchurch
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External
beam
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Passive
pressure
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| i = Salalelek il C
o — —
Pe; X B \ Pep X 1 / Non Liquefiable Crust
Compression struts or slab on
grade to provide compression Liquefiable Soil

Non Liquefiable Strata




PLAN

Grade Beam

Grade Beam
Tension Strut | | /
— } {
[ A7 A A i
! ! ."
/ Compréssion Strut to be checl,<ed (typ.) ,'
W22 A I B
o pfx_,,. ' I
l o : I
, , , 7 Grade Beam
b -
Z/ B4 m ] I

<: Direction of soil movement

J—T

\q N

/7 :
Tension Strut ' W

Possible rupture planes
(engineer to evaluate worst condition)

(+— % (Pg; x W, +passive pressure) for worst condition

Equivalent Structural Scheme



Geotechnical Engineer Input

« Geotechnical Engineer to provide:
— Differential free field vertical movement: 140 mm
— Differential free field horizontal movement: 600 mm
— Friction coefficient between soil and foundations: 0.4
— Bearing capacity on crust: 50 Kpa
— Passive pressure on grade beams: 10xH (m) : P (Kpa)

O Based on vertical loads at each foundation provided by the Structural Engineer,
the Geotechnical Engineer will determine if there is risk of punching for each
foundation

= Differential movement is too large, since the existing foundations are not
adequately tied together in two directions



FIC:
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applied load
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AR, <

L at column locations
connected to roof
structure and secured
to concrete beam;
added stability to beam

ol

new HSS at each side
of concrete column
c/w top and bottom
plate,secured to
existing/new concrete

new concrete

4~ pedestal

-RY \\\.
/

\
.“

Retrofit Detalls

Total drift due to liquefaction: 3.86 %

Decided to add two exterior steel
columns at each side of the existing
concrete columns to minimize the
Impact to the inside of the building,
allowing to increase the DDL of the
VLS to 4%, the new steel columns
have to be designed to carry all the
loads carried by the existing concrete
columns.
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\ steel column

steel column
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perimeter grade beam



Stability of Japanese dykes

Analyses of dyke failures during Kushiro
Earthquake.

Soil Properties, input motions and failure
data provided by Japanese.

Analyses conducted in Vancouver at UBC.

No interactions during the analyses.



-- Non-liguefiable Zone

Typical cross-section of Kushiro dike used in parametric studies



S = 0.01exp (0.922 -2 :L)
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Comparison of observed settlements with the black prediction curve

Eastern Hokkaido Dykes



Western Hokkaido dykes

Subsequent to the Kushiro quake, an
earthquake occurred off western Japan, which
damaged many Western Dykes. | was invited
to Sapporo to discuss the failures and how to
prioritize remediation measures.

At the meeting the Japanese presented the
results of applying my S-equation to the new
set of failures. Fortunately the equation worked
extremely well as shown in the next slide.
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Comparison of observed settlements for all slopes against

computed settlements for 1:2.5 slopes (solid curve).
Points not close to the curve are for slopes other than 1:2.5

Western Hokkaido Dykes



Slopes and Embankment Dams

All examples had liquefaction problems and most pressing
problem was the residual strength.

Empirical correlations for residual strength have been

presented by Harder and Seed (1990) and Ildriss and
Boulanger (2008).



Sardis Dam Mississippi, 1988- 1994

This Is the first instance of performance
based design of an embankment dam



First Example of Performance Based Design

Clay or compacted fir prioritiziRgCHEiflediation foe crain
Fam3  Hydraudlically placed sand system
[T Silts

Alluvial deposit
L7771 Top stratum clay
B Dumped riprap

Cross-section of Sardis Dam



95— _
/N
85 — EL 84 . T
: < AT
75 [ 4 L ——
% / -":—:1— -/ 1.4 s b
E 65 B L LamELRE - -
Yos5 -
45— ALE
------ Undeformed Dam 5 0 50m
=== ]

Post-liguefaction deformed shape of Sardis Dam:
note different vertical and horizontal scales.
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Factors of safety of Sardis dam as a function
of residual strength in weak foundation layer



Vertical displacement, m

0.8 0.9 1.0
Factor of safety

Variation of loss of freeboard with
factor of safety of undeformed dam.
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Vibro-Grouted Stone Columns

Deep Soil Mixing

Cast-in-Place Piles

Driven Piles
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llevel of the Reservoir




. 30.5m N 70mto73m .
Remediation Zone
_EL.95
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L
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2 o ___Thickness varies
2= Weak clay layer
L L Approx. bottom EL. 61
Min. 7 Spaces @
3.7m_ 25paces @ 2.4 m
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Concrete Files

Elevation of pile remediation of Sardis dam (after Stacy et al., 1994)



Cross-Section Of The Pile Reinforced
Section Of Sardis Dam
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Plan view of pile remediation of Sardis dam (after Stacy et al., 1994)
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Aerial View of Clemson Diversion Dams (Wooten et al, 2008)
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Mormon Island auxiliary dam

Two performance criteria used:
1. Displacement criterion
2. Pore pressure level criterion of 20%
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Mormon Island Auxiliary Dam: zones of liquefaction
and excess pore pressure
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DOWNSTREAM
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Fig. 32. Downstream remediation plan.




Downstream
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