Utah Chapter EERI Short Course, April 9th 2014

Maverik Center, West Valley, Utah

Evaluation and Mitigation of Liquefaction Hazard for Engineering Practice

W.D. Liam Finn

Professor Emeritus

University of British Columbia

Show Canterbury Video

Flow (static) Liquefaction

- Strain softening response in undrained shear
- Trigger mechanism required
- Static shear stress greater than minimum (*liquefied*) undrained shear strength
- Kinematic mechanism required
 - Uncontained flow
 - Contained deformation

Flow (static) liquefaction steeply sloping ground

Sites defined as:

Steeply sloping (> 5 degrees) or earth embankments (e.g. dams)

Sequence to evaluate flow liquefaction:

- 1. Evaluate susceptibility for strength loss
- 2. Evaluate stability using post-earthquake shear strengths

3. Evaluate trigger for strength loss

If soils are susceptible, and instability possible, it is often prudent to assume trigger will occur

Estimates of Residual Shear Strength from SPT-N Data

Estimates of Residual Strength

Equivalent clean sand CPT normalized corrected tip resistance, q_{c1Ncs-Sr}

Idriss and Boulanger, 2008

Feb. 23rd, 2014

Show Pile Videos

Key Elements in Liquefaction Studies

After Seed et al. 2001

Demand vs Resistance Capacity For Sands

Demand – PGA and Seismic Shear Stresses

Simplified Method and or Site Response Analysis

Resistance Capacity - - in situ tests – SPT, CPT, Vs

Extreme Measures - Test samples cored from frozen ground

Cyclic Shear Stress Ratio

The Simplified Approach estimates average cyclic shear stress ratios (CSR) caused by earthquake shaking using:

$$CSR = 0.65 \frac{a_{max}}{g} \cdot \frac{\sigma_{v0}}{\sigma'_{v0}} \cdot \frac{r_{d}}{MSF}$$

Alternative approach is to do site response analyses.

Stress Reduction Coefficient rd

Youd et al. 2001

Magnitude Dependent Stress Reduction Coefficient

Idriss and Boulanger, 2008

Liquefaction resistance curves for M=7.5 by Youd and Idriss& Boulanger procedures

Note that the differences in rd makes little difference in results. Correlation with data takes care of it.

Magnitude Scaling Factors-MSF - 2001

MSF from Idriss and Boulanger (2008)

MSF = min of
$$\left[6.9 \exp(\frac{-M_W}{4}) - 0.058 \right]$$
 or 1.8

Comparison of Youd et al. (2001) and Idriss & Boulanger (2008) Magnitude Scaling Factors

Liquefaction resistance curves for M=6.0 by Youd and Idriss& Boulanger procedures

(N1)60m

Variations of K_{α} with SPT & CPT Data

Site Response Analysis for

1. Determination of PGA and **2. Cyclic shear stresses** This is a developing trend. It is very prevalent in Vancouver. Is this the best approach? Much better than the Simplified Method?

Turkey Flat Instrument Layout

Site Response to Outcrop Input Motions

Red curve is recorded response - other colors are predictions very bad predictions. Probability of liquefaction would be seriously over-estimated.

Predictions using recorded motions at D at base of soil column. VGood Results

Caution on using site response analysis to get acceleration (PGA) or shear stresses.

Remember that all the liquefaction assessment charts were developed using shear stresses computed using the simplified equation.

See comments on getting PGA in next slide

PGA for Simplified Method

"The formal assessment of liquefaction at a site using the simplified procedure should be based on the a_{max} that is estimated to develop in the absence of soil softening or liquefaction."

Boulanger and Idriss, 2014

Validation of analytical methods 1

Prediction Exercise 1; Element Tests

Saada and Bianchini (1988) prediction exercise demonstrated that ability of a model to simulate element tests is no guarantee of how it will perform in other element stress fields with different stress paths. Models need to be calibrated for the dominant stress paths expected in application as far as is possible with the conventional tests used in engineering practice.

Centrifuge Tests

The centrifuge test with artificial gravity 20g- 60 g can create stresses in a relatively small model that are representative of the stresses in the field.

Also by creating slopes or introducing structures into soil model we can create Inhomogeneous stress states. These pose greater challenges for soil models.

Validation of analytical methods 2

Prediction Exercise 2; Centrifuge Tests

Smith (1994) warned about this in his discussion of the VELACS project which evaluated how well different constitutive models predicted the results of centrifuge tests: "A particularly insidious feature of the calibration process is that a predictor could calibrate his/her model to fit the bulk of the (largely triaxial) data provided in the information package and still make poor predictions of seismically induced stress paths"

Effect of Sample Preparation

Case for Water Pluviation

Effect of Loading Path on Stress- Strain Response

For liquefaction field studies use cyclic simple shear test data to calibrate computational model in computer program, if possible.

Resistance Capacity

Development of SPT liquefaction triggering criterion CSR ≥ CRR

Ohsaki 1964 – Whitman1970 – Seed 1976 Seed et al 1985

Youd et al 2001 State of Practice

Idriss and Boulanger, EERI Manual 2008 and associated seminar program leads to controversy and formation of NSF Committee to resolve issues by developing an acceptable new state of practice.

SPT-Liquefaction Assessment Chart

SPT case histories

Modified Standard Penetration - (N1)60 - Blows/ft

CPT - Liquefaction Assessment Chart

Soil Behavior Chart by Robertson

- 1. Sensitive, fine grained
- 2. Organic soils peats
- 3. Clays silty clay to clay
- 4. Silt mixtures clayey silt to silty clay
- 5. Sand mixtures silty sand to sandy silt
- 6. Sands clean sand to silty sand
- 7. Gravelly sand to dense sand
- 8. Very stiff sand to clayey sand *
- 9. Very stiff, fine grained *

* Heavily overconsidated or cemented

Evaluation of Liquefaction Potential at a Site

Moss Landing Marine Lab UC 8

 $L = 20m, H = 5m; a_{(max)} = 0.28g, M = 6.9$

Moss Landing UC 8

UC 14 NCEER (R&W) Method

Example in I&B 2008 Appendix B: L = 20m, H = 5m

Moss Landing UC 14

Locations of Liquefaction Testing

Contours of Liquefaction Index

Vs-based Liquefaction correlation for clean uncemented sands (after Andrus & Stokoe 2000)

Velocity Vs by Inversion of Ambient Motions

- Filled circles depict averaged down-hole and SCPT measurements to 60 m depth.
- Open circles depict averaged down-hole only measurements.
- Average relative difference in V_S is 5% between average geotechnical data and inversion result to 110-m depth.

Liquefaction Triggering by Downhole V_s

94-14: LPI = 81 94-15: LPI = 73 94-16: LPI = 63 Downhole: LPI = 77

Liquefaction Triggering using Ambient V_s

94-14: LPI = 81 94-15: LPI = 73 94-16: LPI = 63 Downhole: LPI = 77 Inversion: LPI = 69

CRR for Fine Grained Plastic Soils

1.The direct method using cyclic loading tests on high quality samples.

Otherwise:

2.Measure the monotonic undrained shear strength, S_u , in situ (Vane shear test or from CPT) or by test on high quality samples or

3.Estimate Su based on the stress history of the soil profile

Then estimate CRR from Su by empirical methods

Evaluating CRR for Fine Grained Plastic Soils

The cyclic shear stress τ_{cyc} is 65% of the peak shear stress as for sand but the ratio

 $CRR_{M = 7.5} = (T_{cyc}/S_u)_{N = 30} (S_u/\sigma_{vc}^i)$

 $(T_{cyc}/S_u)_{N=30}$ is evaluated from a substantial data base for N = 30 cycles when M = 7.5.

The value 0.83 was selected for clay-like soils

subjected to direct simple shear loading conditions.

This value may change as more data as more data becomes available.

 $CRR_{clay} = 0.8 (S_u/\sigma_{vc}^i)$

(15)

For the present, CRR is given by

 $CRR_{clay} = 0.83 (S_u/\sigma_{vc}^i)$

If a correction factor $C_{2D} = 0.96$ is included to represent the fact that motions occur in the field in two directions then:

 $CRR_{clay} = 0.8 (S_u/\sigma_{vc}^i)$

Bjerrum Vane Shear Correction Factor

Magnitude Scaling Factors for Sands and Clays

Boulanger and Idriss 2004

Slope Correction Factor Kα for Plastic Soils

The challenge of probabilistic ground motions

The simplified method is based on an associated M and Acceleration

Probabiliistic accelerations result from contributions of all magnitudes between considered Mmin and Mmax. So how do you employ the simplified method?

Serious implications also for lateral spreading and settlement. Discussed later.
Magnitude-distance deaggregation for NBCC 2005 PGA in Vancouver

Contribution of each 'Bin Magnitude'

Liquefaction hazard curve weighted for magnitude M = 7.5First proposed by Idriss, 1984.

Magnitude-distance deaggregation for NBCC 2005 PGA in Vancouver

Liquefaction potential for various (N₁)_{60,cs} values and seismic site conditions, using Youd et al. (2001)

Maximum cyclic shear strain V_s, FS and D_r

Expected lateral spreading displacement

$$LDI = \int_{0}^{Z_{max}} \gamma_{max} dz$$

$$D_{H} = \begin{cases} (S+0.2)LDI, \\ 6W^{-0.8}LDI, \end{cases}$$

ground slope case free face case

Variation of volumetric strain with relative density, SPT and CPT resistance, and FS against liquefaction

Overall Vertical Settlements

Overall vertical settlements report

CPTU name

Measured versus predicted displacements

Lateral Displacement Equation

Youd's Equation:

 $\log D_{\rm H} = b_0 + b_1 M_{\rm W} + b_2 \log R^* + b_3 R + b_4 \log W + b_5 \log S$ $+ b_6 \log T_{15} + b_7 \log(100 - F_{15}) + b_8 \log(D50_{15} + 0.1 \text{ mm})$

Determining equivalent source distance

The PGA is the average of 3 GMPE for Site Class D

Input parameters for school project

Input Parameters									
D50 ₁₅ (mm)	0.25								
F ₁₅ (%)	5								
T ₁₅ (m)	3								
S (%)	4								
М	7								

Accelerations for calculating D

Acceleration for Calculating D	Distance, D (km)	Lateral Displacement (m)				
0.20g Avg. Hazard Acceleration, $\varepsilon = 0$	D = 25	0.54				
0.35g Site Response Analysis	D = 12	1.79				
0.46g Code Acceleration (Site Class C)	D = 6	4.10				

Sample calculation of lateral spreading displacements using the deaggregation method

		Distance Bins													1			
		2.5	7.5	12.5	17.5	22.5	27.5	32.5	37.5	42.5	47.5	52.5	57.5	62.5	67.5	197	.5	Row Totals
	5.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	0	0
	5.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
	5.5	0	0.0001	0	0	0	0	0	0	0	0	0	0	0	0		0	1E-04
itude Bins	5.7	0	0.0004	0	0	0	0	0	0	0	0	0	0	0	0		0	4E-04
	5.9	0	0.0008	0.0001	0	0	0	0	0	0	0	0	0	0	0	1 1	0	9E-04
	6.1	0	0.0018	0.0003	0	0	0	0	0	0	0	0	0	0	0	1 1	0	0.002
	6.3	0	0.0038	0.0007	0.0002	0	0	0	0	0	0	0.0001	0	0	0	1 1	0	0.005
	6.5	0	0.0076	0.0017	0.0004	0.0001	0	0	0	0	0	0.0002	0.0002	0.0001	0	1 1	0	0.01
	6.7	0	0.0145	0.0039	0.0011	0.0003	0.0001	0	0	0	0	0.0005	0.0004	0.0003	0.0002	1 1	0	0.021
	6.9	0	0.0256	0.0082	0.0026	0.0009	0.0004	0.0001	0	0	0	0.0009	0.0008	0.0005	0.0004	1 1	0	0.041
	7.1	0	0.0421	0.016	0.0057	0.0021	0.001	0.0004	0.0002	0.0001	0	0.0009	0.0008	0.0005	0.0004	1 1	0	0.071
5	7.3	0	0.064	0.0291	0.0119	0.0049	0.0024	0.001	0.0005	0.0003	0.0001	0	0	0	0	1 1	0	0.114
Ē	7.5	0	0.0897	0.0487	0.0227	0.0102	0.0053	0.0024	0.0014	0.0008	0.0004	0.0002	0.0001	0	0	1	0	0.182
	7.7	0	0.0594	0.0374	0.0194	0.0095	0.0053	0.0026	0.0015	0.0009	0.0004	0.0003	0.0002	0	0	1	0	0.137
	7.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ъ	b	0
	8.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	à	ù.	0
	8.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	d,	d.	0
	8.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	8.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
	8.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0

Total of the Totals: 0.584

Using Different Methods

Calculated displacements for the school site in Delta

Closing the Loop

It is the usual procedure in the School Retrofit Program for the Geotechnical and Structural Engineers get together with at least two members of the Technical Review Board to decide how to deal with the consequences of Liquefaction in the most economical way.

An example of this cooperation follows for a particular school. The Structural Engineer involved is John Sherstobitoff, Ausenco Company, Vancouver, BC. The slides are abstracted from a recent presentation he made on the School Project.

Seismic Retrofit Guidelines, 2nd Edition November 4th, 2013

MANUAL VOLUME NO. 11

LIQUEFACTION GUIDELINES

Structural Engineering Guidelines for the Performance-based Seismic Assessment and Retrofit of Low-rise and Mid-rise British Columbia Buildings

W.D. Liam Finn, A. Wightman, John Sherstobitoff and Jason Dowling

Manual Volume #11

Liquefaction Design Example with Performance Limits

- Building Description
 - One storey mixed concrete and steel framed structure
 - LDRS Concentric braced frame (Tension-Compression moderately ductile)
 - DDL: 2.5%
 - VLS Exterior: Non-ductile concrete columns
 - DDL: 1.25%
 - VLS Interior/Exterior: Steel columns
 - DDL: 4%
 - Liquefaction Drift Limit
 - LDL: 4% or 2.5% * lesser of the two
 - * if liquefaction effects can cause such deformation

Effects of Lateral Spreading

School building on liquefied soil. Foundations not tied together. What relative displacement to assign to crack?

Loads from Lateral Spreading on Retrofitted Foundation

Investigate critical bay for crack location

Liquefaction Drift Limit (LDL)

- Drift Components due to liquefaction
 - Residual drift (RD)
 - Effective drift demand due to lateral soil spreading (EDH)
 - Effective drift demand due to vertical soil settlement (EDV)

Example from Christchurch

Geotechnical Engineer Input

- Geotechnical Engineer to provide:
 - Differential free field vertical movement: 140 mm
 - Differential free field horizontal movement: 600 mm
 - Friction coefficient between soil and foundations: 0.4
 - Bearing capacity on crust: 50 Kpa
 - Passive pressure on grade beams: 10xH (m) : P (Kpa)
 - Based on vertical loads at each foundation provided by the Structural Engineer, the Geotechnical Engineer will determine if there is risk of punching for each foundation
 - Differential movement is too large, since the existing foundations are not adequately tied together in two directions

Retrofit Details

- Total drift due to liquefaction: 3.86 %
- Decided to add two exterior steel columns at each side of the existing concrete columns to minimize the impact to the inside of the building, allowing to increase the DDL of the VLS to 4%, the new steel columns have to be designed to carry all the loads carried by the existing concrete columns.

Stability of Japanese dykes

- Analyses of dyke failures during Kushiro Earthquake.
- Soil Properties, input motions and failure data provided by Japanese.
- Analyses conducted in Vancouver at UBC.
- No interactions during the analyses.

Typical cross-section of Kushiro dike used in parametric studies

S = 0.01 exp (0.922
$$\frac{H_{D}}{H_{NL}} \frac{H_{L}}{H_{NL}}$$
)

Comparison of observed settlements with the black prediction curve

Eastern Hokkaido Dykes

Western Hokkaido dykes

Subsequent to the Kushiro quake, an earthquake occurred off western Japan, which damaged many Western Dykes. I was invited to Sapporo to discuss the failures and how to prioritize remediation measures.

At the meeting the Japanese presented the results of applying my S-equation to the new set of failures. Fortunately the equation worked extremely well as shown in the next slide.

Comparison of observed settlements for all slopes against computed settlements for 1:2.5 slopes (solid curve). Points not close to the curve are for slopes other than 1:2.5

Western Hokkaido Dykes

Slopes and Embankment Dams

All examples had liquefaction problems and most pressing problem was the residual strength.

Empirical correlations for residual strength have been presented by Harder and Seed (1990) and Idriss and Boulanger (2008).

Sardis Dam Mississippi, 1988-1994

This is the first instance of performance based design of an embankment dam

First Example of Performance Based Design

Cross-section of Sardis Dam

Post-liquefaction deformed shape of Sardis Dam: note different vertical and horizontal scales.

Factors of safety of Sardis dam as a function of residual strength in weak foundation layer

Variation of loss of freeboard with factor of safety of undeformed dam.

Location of remediation plug to stabilize upstream slope of Sardis dam

ALTERNATIVE REMEDIAL METHODS - SARDIS DAM

Vibro-Grouted Stone Columns
Deep Soil Mixing
Cast-in-Place Piles
Driven Piles

Elevation of pile remediation of Sardis dam (after Stacy et al., 1994)

Cross-Section Of The Pile Reinforced Section Of Sardis Dam

676 Concrete Piles (213 m remediation zone) 1918 Concrete Piles (610 m remediation zone) 2594 Concrete Piles (total)

Plan view of pile remediation of Sardis dam (after Stacy et al., 1994)

Dynamic bending moments in the leading upstream pile

Distribution of pile shears between pile rows

Aerial View of Clemson Diversion Dams (Wooten et al, 2008)

Simplified cross-section Clemson Dams

Cross Section of Remediated Downstream Slope (Wooten et al 2008)

Mormon Island auxiliary dam

Two performance criteria used:

- 1. Displacement criterion
- 2. Pore pressure level criterion of 20%

