Evaluation & Mitigation of Liquefaction Hazard for Engineering Practice April 9, 2014 Salt Lake City, Utah **EERI Short Course**

Geotechnics of Tsunami **Flood Losses** Tsunami Scour & **Geo-Risk Reduction**

Mathew Francis, PE, M ASCE mathew.francis@urs.com GeoEngineering & Resilience Manager, URS Corporation Chair, ASCE Committee on Critical Infrastructure

www.urs.com

ciasce.asce.org

Presentation Outline

Liquefaction: A Hydraulic Hazard? DRR Focus from a Geotechnical Engineering Perspective

- 1. Historical perspectives
- 2. Tohoku observations
- 3. <u>ASCE 7 tsunami loads &</u> <u>effects</u>
- 4. ASCE 24 flood scour provisions
- 5. Needed validations &

measurements

6. <u>DRR through geo-risk</u> reduction

Ref 2014 World Disasters Report, IFRC

Total

Miscellaneous accidents

Total technological disasters

Transport accidents

1,438

7,868

10,750

120,707

2,115

6,417

10,329

252,339

2,669

6,702

11,652

100,539

1,126

7,021

10,004

33,852

909

5,075

7,651

24,507

895

5,275

6,946

242,218

911

5,021

6,865

17,671

1,507

4,176

6,744

304,474

Earthquakes/t

Floods¹

Vorld port,		Geo-disasters vs Hydro-disasters									
	• F	req	uen	cy:	10%	0	9()%			
	• \$	5 Lo	sses	•	300	%	7	0%			
	• F	ata	litie	S	65	%	3.	5%			
TABLE 6 Total nu	imber of pe	eople rep	orted killed	d, by type	of phenor	menon and	d year (20	03–2012)			
	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Total
Droughts/food insecurity	38	80	88	208	n.a.	6	2	2	n.a.	n.a.	424
Earthquakes/tsunamis	29,617	227,290	76,241	6,692	780	87,918	1,888	226,735	20,946	711	678,818
Extreme temperatures	74,748	556	814	5,104	1,044	1,608	1,212	57,064	806	1,758	144,714
Floods ¹	3,770	7,102	5,754	5,845	8,565	4,029	3,534	8,571	6,142	3,574	56,886
Forest/scrub fires	47	14	47	16	150	86	190	135	10	22	717
Insect infestation	n.d.r.	n.a.	n.d.r.	n.a.	n.d.r.	n.d.r.	n.a.	n.d.r.	n.d.r.	n.d.r.	n.a.
Mass movement: dry ²	n.d.r.	44	n.d.r.	11	n.d.r.	120	36	n.d.r.	n.d.r.	16	227
Mass movement: wet ³	707	313	646	1,638	271	504	657	3,402	314	504	8,956
Volcanic eruptions	n.a.	2	3	5	11	16	n.a.	323	3	n.a.	363
Windstorms	1,030	6,609	5,294	4,329	6,035	140,985	3,287	1,498	3,103	3,071	175,241
Subtotal climato-, hydro- and meteorological disasters	80,340	14,674	12,643	17,140	16,065	147,218	8,882	70,672	10,375	8,929	386,938
Subtotal geophysical disasters	29,617	227,336	76,244	6,708	791	88,054	1,924	227,058	20,949	727	679,409
Total natural disasters	109,957	242,010	88,887	23,848	16,856	235,272	10,806	297,730	31,324	9,656	1,066,346
Industrial accidents	1,444	1,797	2,281	1,857	1,667	776	933	1,061	684	787	13,287

April 9, 201

Source: EM-DAT, CRED, University of Louvain, Belgium

755

5,144

6,583

37,907

1,112

4,151

6,050

15,706

13,437

56,850

83,574

1,149,920

Historic
 Perspectives
 on Geo-Scour

Local Scour vs General Erosion

- 1930s-Terzaghi vs. Fillunger theories
- 1950s-River/Bridge fieldwork-Einstein
- 1960s- DOT scour programs emerge
- 1970s- HEC process development
- 1980s- FEMA tsunami scour criteria
- 1990s- Theorize tsunami liquefaction
- Post 2004 Tsunami scour liquefaction data; FEMA P55 & P646 update
- Post 2011 ASCE 7: refine tsunami scour limits with flow, soil, site effects.

About 60% of US bridge failures are due to scour. Only 1 DOT in the USA manages scour in the structures geotechnical dept. All others manage scour in the hydraulics dept. – Ref. Prof. Jean Louis-Briaud, Texas A&M

2. Tohoku 2011 Scour

Local scour General erosion Channel scour Overtopping plunging scour

Observations:

Tohoku scour took many forms, from myriad combinations of water, soils & topography.

Conclusions: Needed ASCE 7 Mitigation Alternatives

- Elevate- structure, site
- Harden Foundations
- Countermeasures barriers, MSE walls, paving, soil-cement

Perspective by Comparison

2004 Sumatra Tsunami

- Magnitude M9.3
- Rupture area: 800 x 100 mi
- Rupture subsidence: ~25 ft
- Maximum runup: 80 ft

M9.1 300 x 100 mi ~25 ft

150 ft

2011 Tohoku Tsunami

Infrastructure damage: ~35B ~350B
 Population Affected: ~3M ~3M
 Displaced: ~500k ~250k
 Casualties ~250,000 ~25,000

Onagawa

Hospital

Evacuation Building

8m tsunami wall intact parallel to flow Large scour holes in concrete pavement.

Otsuchi

6m Sendai Seawall

<image>

Iwaki Onahama: Combined seismic liquefaction & tsunami scour

Figure 1. Local scour, Koh Khao, Thailand. Case SS-4.

Figure 3. Channelized scour. Great Nicobar Case RS-3.

Ref. Tonkin, Francis & Bricker, 2013

Figure 2. Overtopping scour, Taito Port, Japan. Case TO-1.

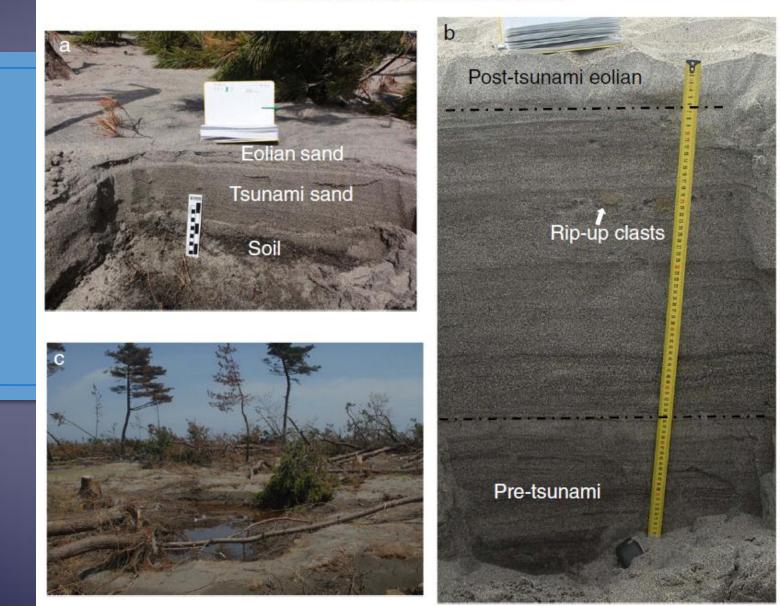
Figure 4. General scour. Yamamoto-cho, Japan. Case TN-12.

April 9, 2014

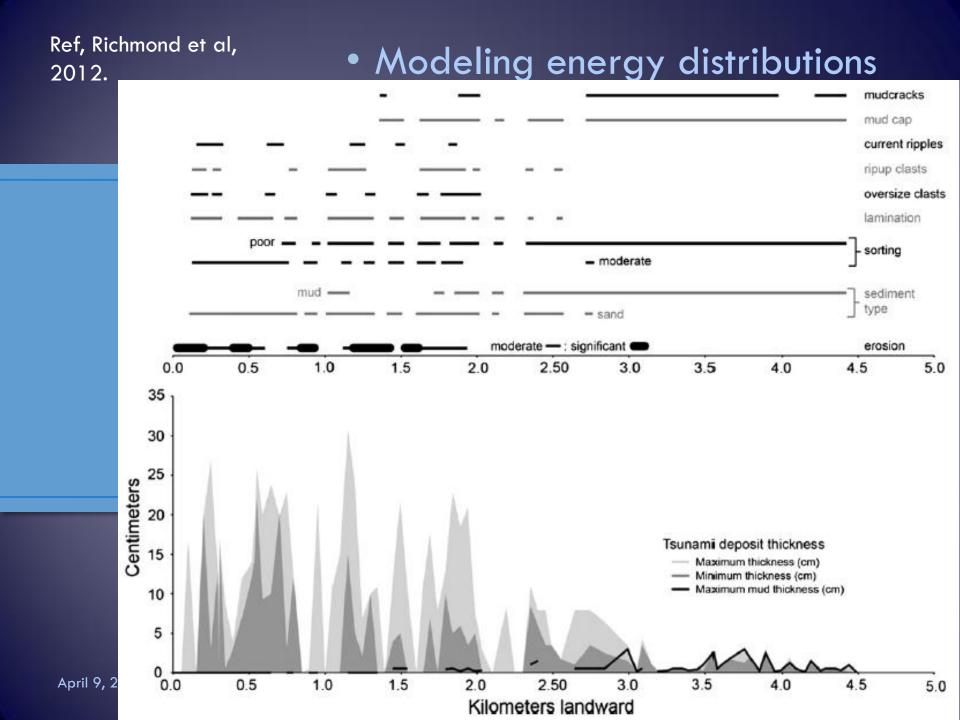
Scour modes identified for ASCE 7

• Sendai Plain, 2011

B. Richmond et al. / Sedimentary Geology xxx (2012) xxx-xxx


April 9,

6


Fig. 5. Google Earth image taken 4/5/2011 showing the survey transect line, remnant artificial dune pedestals and associated shore-parallel scour depressions, probable si partially-infilled return-flow channels on the beach face and average flow direction as determined from bent pine trees.

• Tsunami deposits- infilled scour

B. Richmond et al. / Sedimentary Geology xxx (2012) xxx-xxx

April 9, 2014

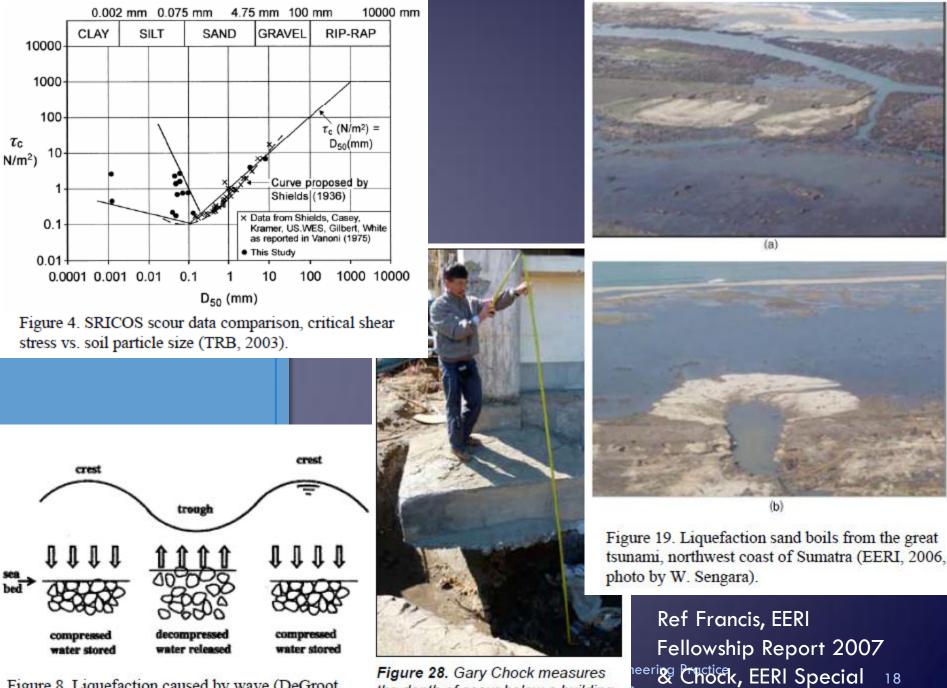


Figure 8. Liquefaction caused by wave (DeGroot, ASCE 2006).

Figure 28. Gary Chock measures the depth of scour below a building corner (photo: Robertson/ASCE).

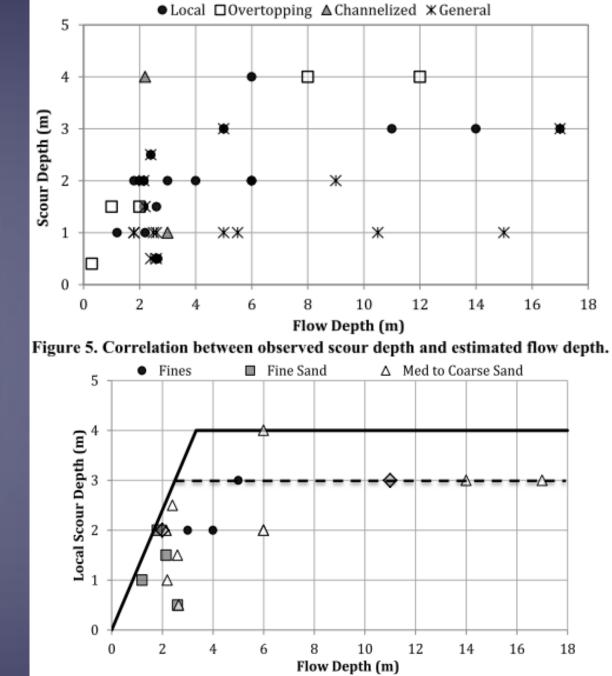

Report, 2011

						Table	1. Scour Measuremen	ts: Estimat	ted Flow a	nd Observed Sc	our Depths in Meters	
Ref Tonkin, Francis & Bricker, 2013					Case	Location	Flow Depth	Scour Depth	Scour Mechanism	Scour Feature		
					Sumatra Andaman Tsunami: Road Scour (RS) and Structure Scour (SS). Source: Francis (2008)							
						RS-1	Aceh Harbor	2.4	2.5	General	Road / bridge washout	
						RS-2	Gle Bruk, Sumatra	2.4	2.5	Local	Abutment washout	
						RS-3	Great Nicobar	2.2	4.0	Channelized	Drawdown along road	
						RS-4	Pt. Blair, Andaman	2.2	1.0	Local	Seawall road scour	
						RS-5	Bang Tao, Phuket	2.15	2.0	General	Road scour	
						RS-6	Fishery Pier, Phangaa	2.15	1.5	Local	Abutment sinkhole	
				1		RS-7	Kuraburi, Phangaa	1.8	1.0	General	Road scour	
						RS-8	Ranong	1.8	1.0	General	Road boil	
						RS-9	Chennai	2.6	1.0	General	Road scour	
						RS-10	Kottapatnam	2.6	0.5	General	Road scour	
C						RS-11	Amblangoda	2.2	1.5	General	Railway scour	
2	cour					SS-1	Lock Nga, Aceh	2.4	0.5	General	Flow though structure	
						SS-2	Kamala, Phuket	2.15	2.0	Local	Footing scour	
6	hearve		nc			SS-3	Khao Lak	2.15	2.0	Local	Footing scour	
U	n sei vi	bservations		SS-4	Koh Khao	1.8	2.0	Local	Footing and utilities			
			SS-5	Kalapakkom	2.6	1.5	Local	Footing scour				
IOT & Tohoku Events			SS-6	Cuddalore	2.6	0.5	Local	Footing scour				
				SS-7	Allapad, Kerala	1.2	1.0	Local	Footing scour			
				SS-8	Xaafuun Peninsula	2.65	0.5	Local	Footing scour			
							u Tsunami: Tohoku Nor	th (TN) and	l Tohoku S	outh (TS). Sourc		
			TN-1	Hachinohe Kanehama	10.5	1.0	General	Stream bank, culvert				
			TN-2	Hirochono Taneichi	6.0	2.0	Local	Footing scour				
						TN-4	Noda Beach	14.0	3.0	Local	Drain outlet	
						TN-5a	Miyako City	6.0	4.0	Local	Bridge approach	
						TN-5b	Miyako City	6.0	2.0	Local	Viaduct pier	
						TN-6	Otsuchi Harbor	12.0	4.0	Plunging	Tsunami barrier	
Con	Leastin	Elem	Record	C	Second Feetune	TN-7	Kamaishi-Ryoishi	17.0	3.0	Local	Wall and barrier gate	
Case	Location	Flow Depth	Scour Depth	Scour Mechanism	Scour Feature	TN-8	Kamaishi City	11.0	3.0	Local	Building foundation	
TC 19	Johinomius Inlat	-			Duidoo akutmont	TN-9	Kamaishi Ozakishi	~ 15	1.0	General	Narrow valley	
	Ichinomiya Inlet	3.0	2.0	Local	Bridge abutment	TN-10	Onagawa Harbor	17.0	3.0	General	Paved waterfront	
	Taito Fishing Port	3.0	1.0	Channelized	Drawdown at seawall	TN-11	Sendai Airport	8.0	4.0	Overtopping	Seawall	
	Hebara Bridge	2.5	1.0	General	Beach	TN-12	Nakahama School	9.0	2.0	General	Open plain	
	Overtopping Example		1	1	C	TS-13	Kashima Port	4.0	2.0	Local	Footings	
	Taito Fishing Port	0.3	0.4	Overtopping	Seawall	TS-14	Nikawahama	5.0	< 1	General	Grass berm	
	likoa Town	1.0	1.5	Overtopping	Floodwall	TS-15	Hasaki Port	5.0	3.0	General	Paved pier	
	Iwaki City	2.0	> 1.5	Overtopping	Seawall	TS-16	Choshi Marina	5.5	1.0	General	Sump tank	
TO-4	Onahama Port	2.0	2.0	Local	Footing	TS-17	Iioka Inlet	5.0	3.0	Local	Roadway by channel	

Ref Tonkin, Francis & Bricker, 2013

Scour patterns

Combined IOT & Tohoku event data

April 9, 2014

EERI Liquefaction S Figure 6. Observed local scour depth and estimated flow depth for different sediment types, with bounding plausible design envelopes shown.

Enhanced scour due to liquefaction induced by rapid drawdown

Tonkin & Yeh (2003) applying Terzaghi (1925):

- Soil supported by both excess pore pressure gradient and intergranular shear
- The fraction of the submerged weight of a soil dp_e/dz particle supported by the pore pressure $T_{effective}/dz$
- Experiments show that above a critical value (Λ_T) when $\Lambda > 0.5$, $T_{effective}$ is reduced enough to result in less frictional resistance to scour
- Drawdown-induced liquefaction enhances scour

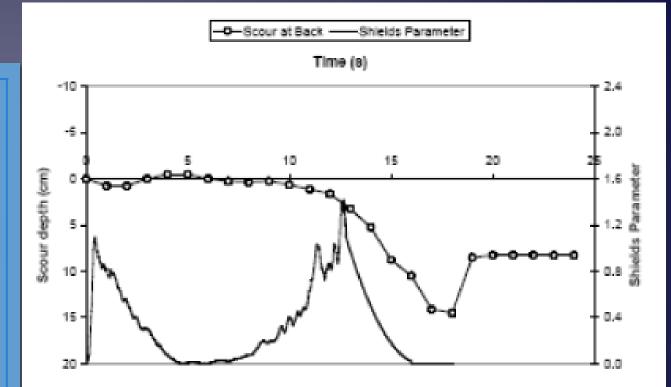


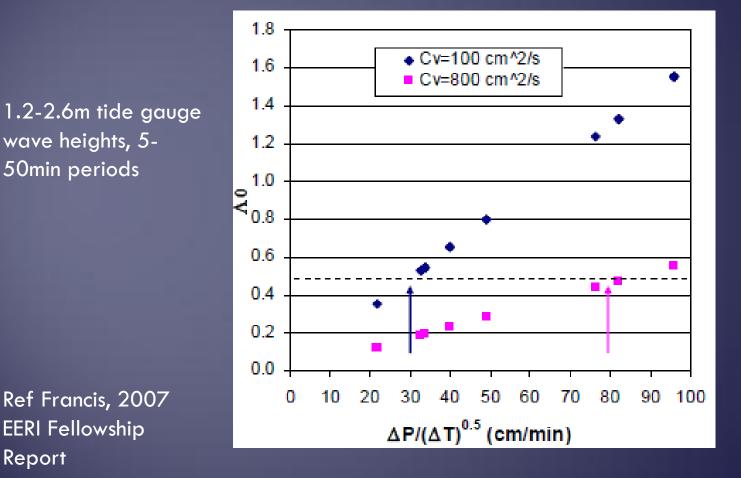
Figure 12. Measured scour depth and estimated Shields parameter for a cylinder initially at the shoreline during long period wave modeling. Water depth=2.45m, offshore incident solitary-wave height H=33cm. H/h=0.09 (Yeh et al. 2003).

Limits on enhanced scour depth due to rapiddrawdown-induced liquefaction

- Diffusion of excess pore pressure within a saturated soil per Terzaghi (1956) $\frac{\partial p_e}{\partial t} = c_v \frac{\partial^2 p_e}{\partial t^2}$
- Diffusion time scale is d_s^2/c_v so drawdown time ΔT must be shorter than this: $\Delta T < d_s^2/c_v$
- Change in head ΔP must be at least as large as the change in excess pore pressure over the scour depth: $\Delta P > \Lambda_T \gamma_b d_s$
- Combine for limits on enhanced scour depth due to pore pressure softening

$$\sqrt{c_v \Delta T} < d_s < \frac{\Delta P}{\Lambda_T \gamma_b}$$

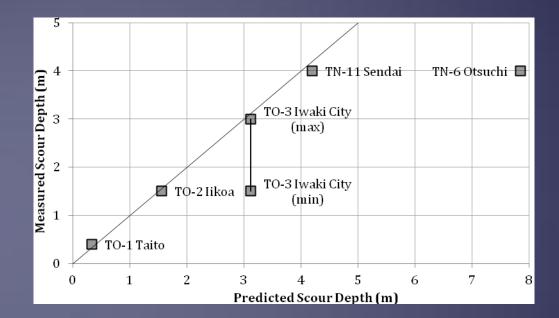
Upper limit on enhanced scour depth due to rapid-drawdown-induced liquefaction


$$\sqrt{c_v \Delta T} < d_s < \frac{\Delta P}{\Lambda_T \gamma_b}$$

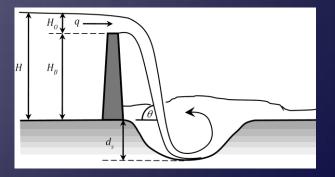
varies with soil type

constant among soil types

- Measured scour depths did not show a dependence on soil type, so the right-hand inequality appears dominant
- Estimate $\Delta P = H_{flow}$ (flood depth), $\gamma_b = 1.65$ (typical submerged soil specific weight), and $\Lambda_T = 0.5$ (from experiments)
- Results in d_s<1.2H_{flow}
- Same as measured value for local scour, so enhanced local scour due to pore pressure softening appears an important process during large tsunami events!


Indian Ocean Tsunami sites, hypothesized liquefaction for Lambda>0.5

Feb 20-21, 2014


Intl Workshop on Application of Fluid Mechanics to Disaster Risk Reduction IRIDeS, Tohoku University, Sendai, Japan

Measured scour depth due to overtopping scour

Can be predicted using Fahlbusch (1994) with limit

$$\begin{cases} d_{scour} = 2.8 \sqrt{qUsin\theta/g} \\ max \quad d_{scour} = 4m \end{cases}$$

Ref Tonkin, Francis & Bricker, ASCE TCLEE Conf. 2013 Chengdu

Conclusions on Tsunami Scour Analysis

• Upper limit to <u>local scour</u> $\begin{cases} d_{scour} = 1.2H_{flow} \\ max \quad d_{scour} = 3m \end{cases}$

Pore pressure softening important

- Upper limit to <u>overtopping scour</u> $\begin{cases} d_{scour} = 2.8\sqrt{qUsin\theta/g} \\ max \quad d_{scour} = 4m \end{cases}$
- No clear dependence on soil type
 - Data quantity not sufficient?
 - High energy means macro-scale (clast) sediment transport, entrapped air pluviation, non individual grain suspension? (Ref Harry Yeh, 2013)

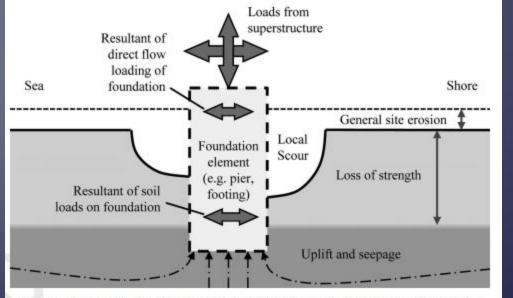
3. ASCE 7TsunamiLoads &Effects

Ref. ASCE 7-16 provisional draft TOC

April 9, 2014

EERI Liquefa

6.12 Foundation Design
6.12.1 General
6.12.2 Load and Effect Characterization
6.12.2.1 Flow Loads
6.12.2.2 Uplift and Under-Seepage Forces
6.12.2.3 Loss of Strength
6.12.2.4 General Site Erosion
6.12.2.5 Local Scour
6.12.2.5.1 Sustained Flow Scour
6.12.2.5.2 Plunging Scour
6.12.2.6 Horizontal Soil Loads
6.12.3 Foundation Performance Criteria
6.12.3.1 Factor of Safety
6.12.3.2 Displacements
6.12.3.3 Deep Foundations
6.12.3.3 Fill
6.12.4Foundation Countermeasures
6.12.4.1 Pavements
6.12.4.2 Geotextiles and Reinforced Earth Systems
6.12.4.3 Facing Systems
6.12.4.4 Ground Improvement
6.12.5 Foundation System Analysis for Risk Category IV
6.13 Structural Countermeasures for Tsunami Loading
6.13.1 Open Structures
6.13.2 Altering or Retrofitting Existing Structures
6.13.3 Tsunami Mitigation Barriers
6.13.3.1 Methodology
6.13.3.2 Site Layout


The basic Tonkin equation (2003 Tonkin & Yeh):

$$\Lambda(d_s) = \frac{\Delta P}{\gamma_b \, d_s} \left(1 - 4i^2 \text{erfc} \left[\frac{d_s}{2\sqrt{c_v \, \Delta T}} \right] \right)$$

Ref. Susan Tonkin, Moffat Nichol

Note: The maximum scour d_s limits at 1.2H as ΔT goes to zero

As the flow height gets larger, the time scale gets longer, and scour depth moves further below the 1.2H theoretical limit, supporting observations of depth limitations.

Ref. ASCE 7-16 provisional draft

Figure C6.12-1. Schematic of tsunami loading condition for a foundation element.

Conceptual comparison: Seismic vs Tsunami Liquefaction

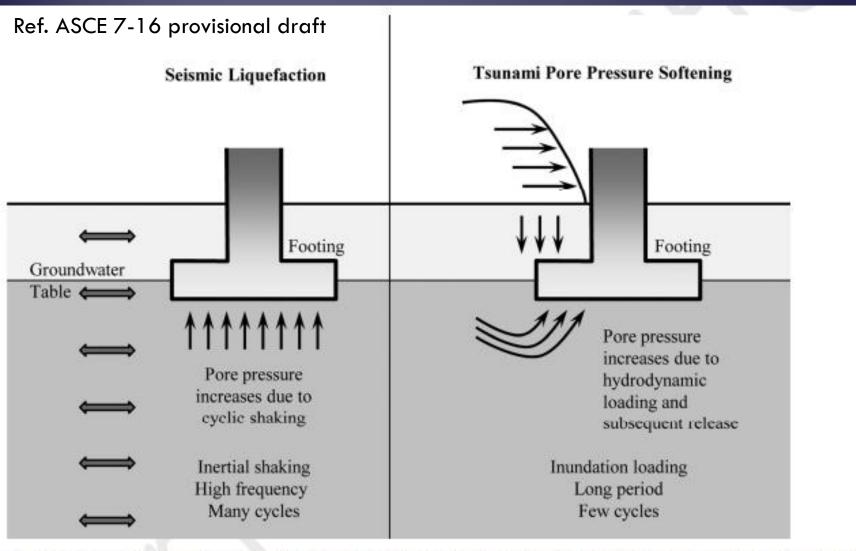


Figure C6.12-2. Schematic diagram showing differences between seismic liquefaction and tsunami-induced pore pressure softening.

ASCE 7 tsunami foundation design procedure

> Ref. ASCE 7-16 provisional draft

- Foundations & barriers must consider soil & site changes from design event at end of shaking impacts
- Use design load combinations
- FS 1.3- uplift/seepage force (USACE EM1110-2-2100)
- Strength loss for scour D=1.2H
- General erosion- must include amplification/channelizing, except rock or non-erodable at v>9m/s

Table 6.12-1 Design Local Scour Depth due to Sustained Flow and Pore Pressure Softening

Flow Depth h	Scour Depth D*					
< 10 ft (3.05 m)	1.2h					
≥10 ft (3.05 m)	12 ft (3.66 m)					

* Not applicable to scour of sites with intact rock strata

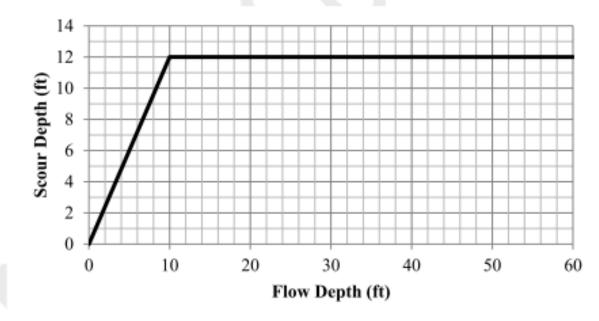


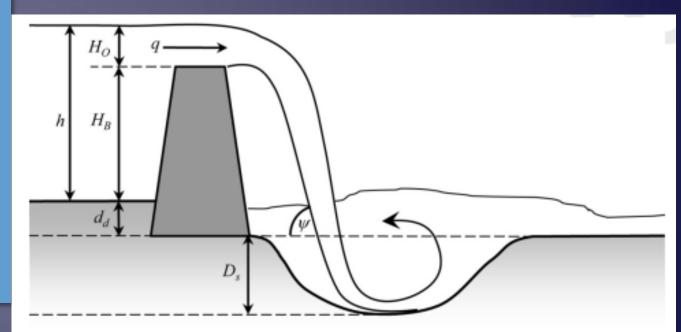
Figure 6.12-1 Local Scour Depth due to Sustained Flow and Pore Pressure Softening

Ref. ASCE 7-16 provisional draft

ASCE 7

tsunami

local scour


procedure

Adjust downward linearly for Froude No. Fr<0.5

$$D_s = c_{2V} \sqrt{\frac{qU\sin\psi}{g}}$$
 (Eq. 6.12.5-1)

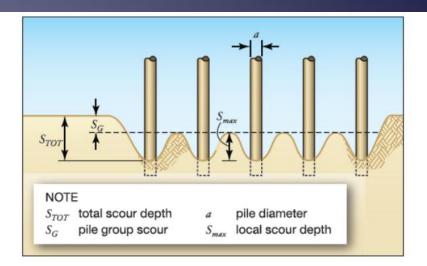
$$U = \sqrt{2g(h+d_d)}$$
 (Eq. 6.12.5-4)

ASCE 7 tsunami plunging scour procedure

Ref. ASCE 7-16 provisional draft

Figure 6.12-2 Plunging Scour Parameters

• Dynamic modeling is permitted to supersede simplified procedure

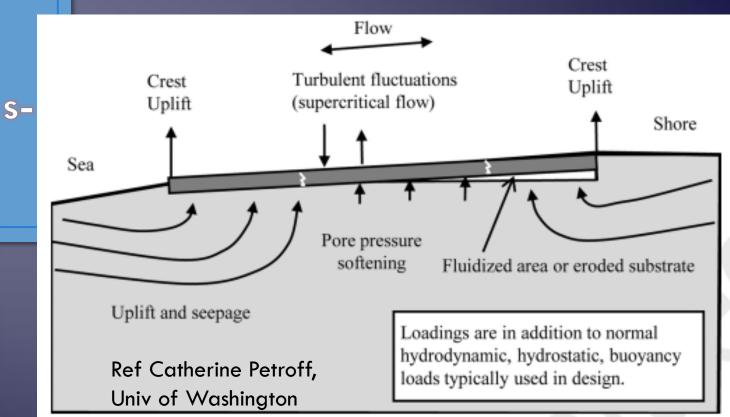

ASCE 7 tsunami foundation performance criteria

> Ref. ASCE 7-16 provisional draft

- FS: 1.3 for bearing capacity, lateral/overturning, internal stability, slope stability
- Displacement: Dv, Dh (footing & slopes) w traditional EP calculations to satisfy structural criteria.
- 3. Fill: follow ASCE 24- must be stable during inundation & resist loads. Add erosion/scour protection if needed (also ref. FEMA 55, section 10.3)

ASCE 7 tsunami foundation performance criteria **4.** <u>**Deep foundations:**</u> resist Fv, Fh incl. general erosion & local scour w exposed grade beam

Figure 8-16. Scour around a group of foundation piles SOURCE: ADAPTED FROM SUMER ET AL. 2001


Ref. ASCE 7-16 provisional draft

(ref. FEMA 55, section 10.5)

EERI Liquefaction Short Course, Salt Lake City, UT

1. Pavements (for roads & building perimeters)

- 1. Shear forces from sustained flow at maximum tsunami flow velocity, umax, over the pavement.
- Uplift pressures from flow acceleration at upstream and downstream pavement edges for both inflow and return flow.
- Seepage flow gradients under the pavement if the potential exists for soil saturation during successive tsunami waves.
- 4. Pressure fluctuations over pavement sections and at joints.
- 5. Pore pressure increases from liquefaction and from the passage of several tsunami waves.
- Erosion of substrate at upstream, downstream and flow parallel pavement edges as well as between pavement sections.

tsunami foundation countermeasures

ASCE 7

Ref. ASCE 7-16 provisional draft

April 9, 2014

Figure C6.12-3. Schematic of tsunami -induced loading on pavement.

	2. <u>Geotextiles & Reinforced</u> <u>Earth</u>	
	same FS 1.3 criteria as	
ASCE 7	foundations – bearing capacity,	
tsunami	lateral/overturning, internal	
foundation	stability, slope stability	
countermeas	;- I	
ures	 Geotechnical Engineering Circular No. 11 - Design and Construction of Mechanically Stabilized Earth Walls and Reinforced Soil Slopes 2010 FHWA-NHI-10-024 	
	 AASHTO, "Standard Specification for Geotextile Specification for Highway Applications", M288-06 – filtration criteria 	
	The following reinforced earth systems are permitted to be used and are presented in order of increasing strength and robustness.	
	 Geotextile tubes constructed of high strength fabrics capable of achieving full tensile strength without constricting deformations when subject to the design tsunami loads and effects. 	
Ref. ASCE 7-16 provisional draft	Geogrid earth and slope reinforcement systems including adequate erosion protection and a maximum lift thickness of 1 ft (0.3m) and facing protection.	
	 Geocell earth and slope reinforcement erosion protection system designs including an analysis to determine anticipated erosion performance if no facing is used. 	
April 9, 2014	EERI Liquefaction Short Course, Salt Lake City, UT 37	

3. Facing systems

Facing systems shall be sufficiently strong and anchored to resist uplift and displacement during design load inundation. The following are facing methods for reinforced earth systems that shall be permitted to be used:

- Vegetative facing for erosion resistance where tsunami flow velocities are less than 12.5 ft/s (3.8 m/s). Design shall be in accordance with methods and requirements in the recognized literature.
- Geotextile filter layers including primary filter protection of countermeasures using a composite grid assuming high contact stresses and high energy wave action design criteria in AASHTO M288-06, including Soil Retention, Permeability, Clogging Resistance and Survivability.
- Mattresses including adequate flexibility include energy dissipation characteristics, and edges shall be embedded to maintain edge stability under design inundation flows.
- Concrete facing provided in accordance with pavement countermeasures in Section 6.12.7.1 and containing adequate anchorage to the reinforced earth system under design inundation flows.
- 5. Stone armoring and riprap provided to withstand tsunami shall be designed as follows:

a) Stone diameter per HEC 23 Design Guideline 4
b) For Fr>0.5 consider high velocity turbulence
c) Peer reviewed numerical model permitted alternate.

ASCE 7 tsunami foundation countermeasures

> Ref. ASCE 7-16 provisional draft

ASCE 7 tsunami foundation countermeasures

4. Ground improvement

Soil cement mixing for nonerodible surface-100psi avg UCS. 5. Risk Category IV Structures Encouraged soil-structure-fluid interaction analysis to verify performance consistent with structural design load combinations. Key references:

- An Introduction to The Deep Soil Mixing Methods As Used in Geotechnical Applications, FHWA-RD-99-138 March 2000.
- 2. USACE, Design and Construction of Levees, App G Soil-Cement for Protection, EM 1110-2-1913 (2000)
- 3. ASTM D1633 00(2007) Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinder

Ref. ASCE 7-16 provisional draft

4. ASCE 24 flooding scour provisions

Non prescriptive analysis not routinely appliedFlood zone vs. elevation and foundation types

Hurricane Sandy moved sand off the beach and ocean water undermined beachfront properties.

Source: Liz Roll/FEMA

Wave, storm surge and erosion damage to oceanfront house in Belle Harbor, Rockaway, NY.

Source: Figure 3-1/Hurricane Sandy MAT Report

EERI Liquefaction Short Course, Salt Lake

5. Needed validations & Measurements

- field
- lab
- probabilistic
- economic

- 1. More scalable scour photos
- 2. Soil samples from events
- 3. Instrumentation of pore pressures during events
- 4. Catalog foundation type, embedment, siting and failure loss vs scour depth
- 5. Load energy & orientation
- 6. Discrete element modeling
- 7. Work with insurers, ie. FEMA COASTAL Equation, <u>fragilities</u>.
- 8. Debris flows/mud flows in flood

6. DRR through geo-risk reduction

-Quantify geo-loss drivers (elevate, harden, protect) -SROI for prioritization Examples: (google keywords for details)
 1. PPD-8/21 NDRF - functional resilience & recovery goals

- 2. New ASCE resilience division (www.ciasce.asce.org)
- 3. NYC: SIRR, PlaNYC & open industrial siting
- 4. Coastal vs building protectionshard vs soft; green infrastructure & climate adaptation
- 5. Oregon Resilience Plan
- 6. FEMA MAT & Hazus modeling
 7. ATC-1: Geo-disaster focus

Guidance on Construction in floodplains

Mitigation Assessment Team (MAT) Report - Hurricane Sandy in NY & NJ

Published November 2013

Federal Emergency Management Agency

(FEMA P-942)

http://www.fema.gov/hurricane-sandy-building-science-activities-resources

Building Science Branch

Ref: john.ingargiola@fema.dhs.gov

Foundation Requirements and Recommendations for Elevated Homes

Hurricane Sandy Recovery Fact Sheet

May 2013

Many homes in New York and New Jersey damaged during Hurricane Sandy experienced flood levels that exceeded the base flood elevation (BFE). The Federal Emergency Management Agency's (FEMA) Mitigation Assessment Teams (MATs) observed several construction and foundation types in the disaster area. The assessment teams also observed narrow building lots and lots with constrained access that will pose construction challenges if those homes are required to be elevated or if owners elect to elevate them to reduce exposure to future flooding (Figure 1).

Base flood elevation (BFE): The height of the base (1-percent annual chance or 100-year) flood in relation to a specified datum. Flood Insurance Rate Map (FIRM): an official map of a community, on which the Federal Insurance Administrator has delineated both the special hazard areas and the risk premium zones applicable to the community.

Special Flood Hazard Area (SFHA): the land in the flood plain within a community subject to a 1 percent or greater chance of flooding in any given year.

Figure 1: Homes on small, tightly spaced lots, typical throughout coastal New York and New Jersey, present access and construction challenges when being transitioned to a raised pile foundation (Rockaway, NY).

Hurricane Sandy Fact Sheet: Open Foundation Requirements for Elevated Homes

assist architects, builders, code officials, planners, and engineers with reconstruction and new construction to create elevated flood-resistant homes. The concepts in this fact sheet will help qualified, registered design professionals (licensed engineers or architects) determine proper site-specific foundation design recommendations when working on narrow lots and lots with constrained access. This fact sheet assumes the reader is familiar with National Flood Insurance Program (NFIP) Special Flood Hazard Area (SFHA) zone designations, including Coastal A Zones. For more information about the coastal SFHA zone designations, visit http://www.region2coastal.com/ coastal-mapping-basics.

nage 1 of 14

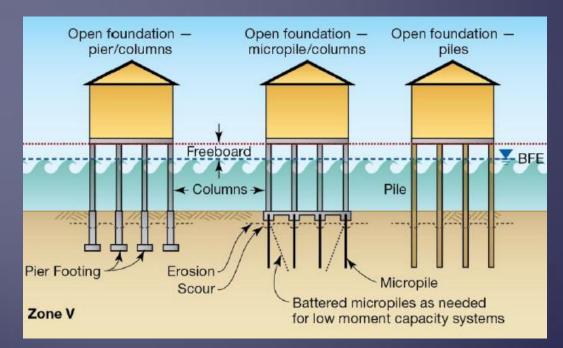
FEMA-DRs-4085-NY and -4086-NJ / May 2013

This fact sheet is intended to

Foundation Requirements and Recommendations for Elevated Homes Purpose: To provide information for reconstructing and building new elevated flood-resistant homes

Foundation Requirements and Recommendations for Elevated Homes

Key Issues


Elevating a building sited on small, confined lot can be difficult

- Eliminates possibility of moving building while timber piles are driven for new foundation
- 2. If elevating in place, overhead clearance is usually insufficient to drive traditional timber piles

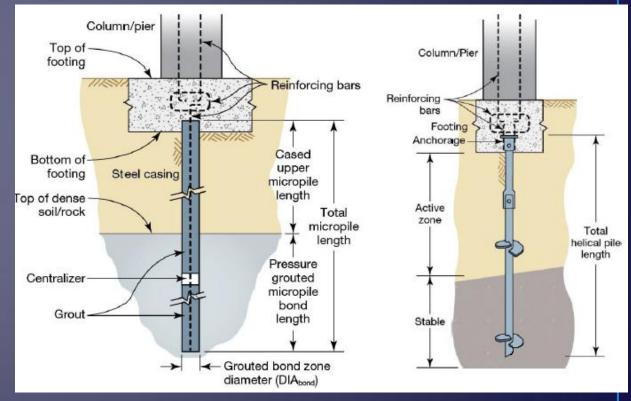
Key Recommendations

3. Understand Substantial Improvement (SI) / Substantial Damage (SD) as they relate to NFIP requirements – with regards to flood zone

Examples of NFIP-compliant homes in Zone V

Foundation Requirements and Recommendations for Elevated Homes

Key Recommendations


4. Consider possible foundations

a) Pier

b) Pile

c) Use of micropiles

Elevated construction on open foundations

Table 1: Design Considerations for Elevating Buildings on Open Foundations in Zone V (and Coastal A Zones)

Overall Category	Data Needed	Consider
State and local requirements	State and local building code requirements Local flood ordinance requirements Zoning ordinance requirements BFE or ABFE, if applicable Natural resources conservation regulations	Open foundations are required in Zone V For new homes and homes that have sustained Substantial Damage or will be Substantially Improved, open foundations including piers, columns, and piles, and micropiles may be used Elevating to (or above) the BFE/ABFE will help protect the home in future storms and reduce flood insurance costs
Structural condition of	Structural strength of load paths. Determine whether the home is structurally strong enough to be lifted	How connections can be improved to strengthen the home
home	Structural strength of the existing footings. Determine whether the footings are adequate for the proposed modification	How the footings can be strengthened or replaced
Geotechnical	Determine whether a shallow foundation is feasible	Piers/Columns are appropriate for shallow foundations
condition of site	Determine whether a deep foundation is required	Piles, piers/columns and micropiles are appropriate for deep foundations
	Predicted flood conditions, including the effects of scour and long-term erosion	Piling and Pier/Column foundations with footings and grade beams can be designed to withstand 3-foot wave loads, but may fail if erosion and scour undermine the foundation
		Micropile foundations may not be able to withstand lateral loads when exposed by scour and erosion
-	Elevation of the water table	Grade beams can be elevated above the water table, but the pile or pier/column must be designed to resist cantilever action, moments, and deflection at the top. Deeper embedment may be necessary

Table 2: Comparison of Relative Costs and Considerations Associated with Elevating Homes on Alternative OpenFoundations in Tight, Narrow Lots

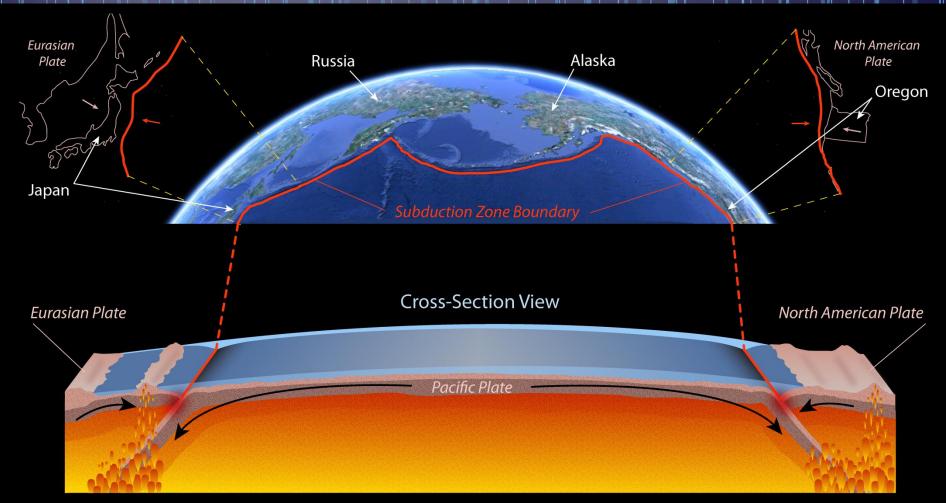
	Consideration	Column/Pier Foundation	Traditional Pile Foundation	Micropile Foundation
Requi footpr	res moving home off int	No	Yes	No
Elevat	te-in-place	Yes	No	Yes
Impac prope	cts to neighboring rties	Medium to High	High	Low
	Foundation	\$	\$\$\$	\$\$
Cost	Foundation connection	\$\$	\$	\$\$
	Elevation	\$\$	\$\$\$	\$\$
Ease of installation		Yes	Maybe	Yes
Desig	n basis	IBC ¹ /ASCE 24/FEMA P-55 ²	IBC ¹ /ASCE 24/FEMA P-55 ²	IBC ¹ /ASCE 24/ FEMA P-55 ² /FHWA NHI-05-039 ³

1 IBC, International Building Code

2 Coastal Construction Manual (2011)

3 Micropile Design and Construction Guidelines Manual (2005)

MAT Support – Code Changes

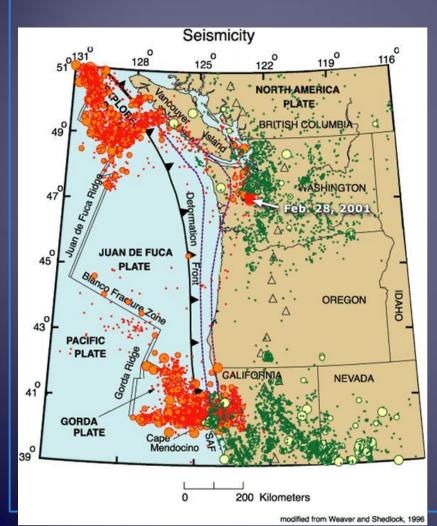

2015 IRC Code Change Proposals: FEMA Proponent

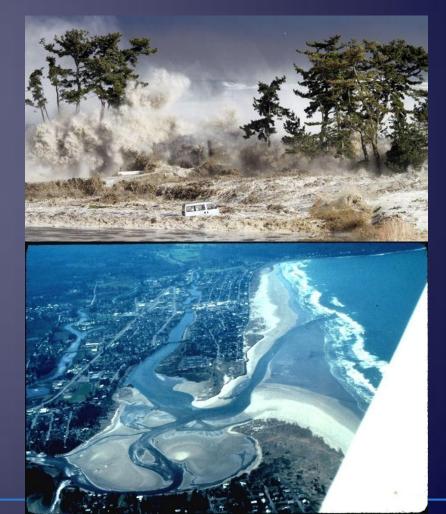
- IRC, requirements for tanks
- IRC, freeboard in all zones
- IRC, Flood-resistant foundation wall requirements
- IRC, treat CAZ, if delineated, as CHHA (Zone V), except permit filled stemwalls
- IFC, fire safety and evacuation plans must consider flood hazard

The FEMA MAT has been providing additional code support to NYC

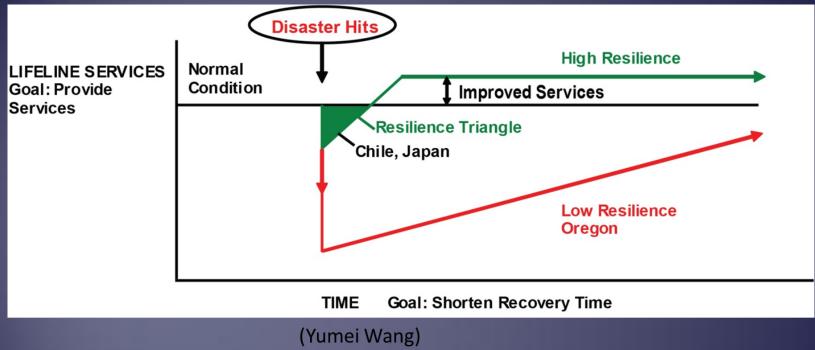
Example of Tsunami Resilience kentyu@seftconsulting.com **Oregon Resilience Plan Cascadia Subduction Earthquake**

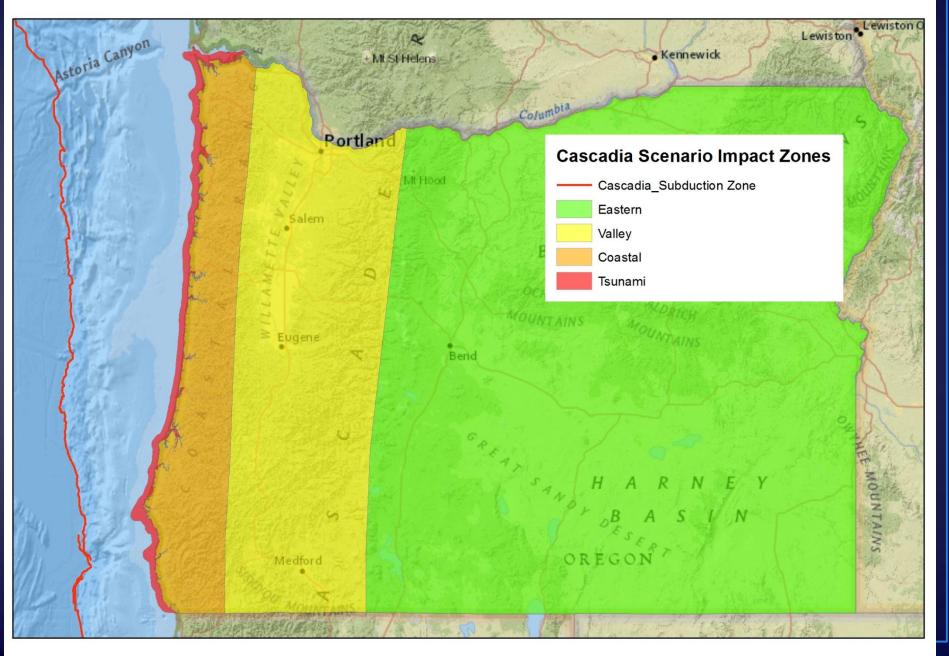
Source:




http://www.oregon.gov/omd/oem/pages/osspac/osspac.aspx#Oregon_Resilience_Plan

Cascadia Subduction Earthquake


- Strong Ground Shaking (M9 w/ 2 4 min shaking)
- Tsunami within 15 to 25 minutes


Definition of Resilience

Resilience: Save lives, Reduce Losses, Speed Recovery, & Rebuild Better Sustainability without **Resilience** is NOT sustainable!

Source: kentyu@seftconsulting.com

Oregon Resilience Plan- Four Zones

Oregon Resilience Planning Steps

- Assess **performance** of existing critical facilities and lifeline systems, and estimate timeframes required to restore functions at present conditions;
- Develop resilience goals based on business and community needs for each zone;
- Define acceptable target timeframes to restore functions to meet resilience goals; and
- Prepare **recommendations** for statewide policies and actions to achieve the desired performance targets.

Source: kentyu@seftconsulting.com

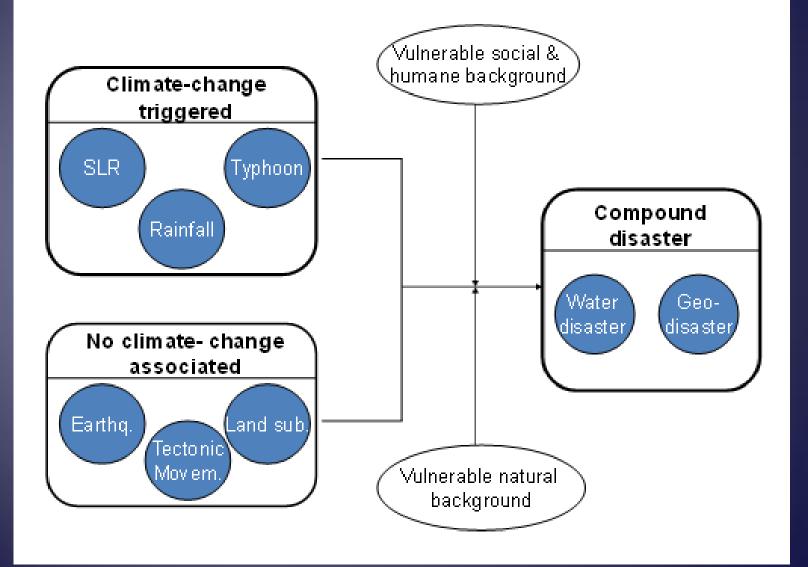
Current Resilience Gap & Targets

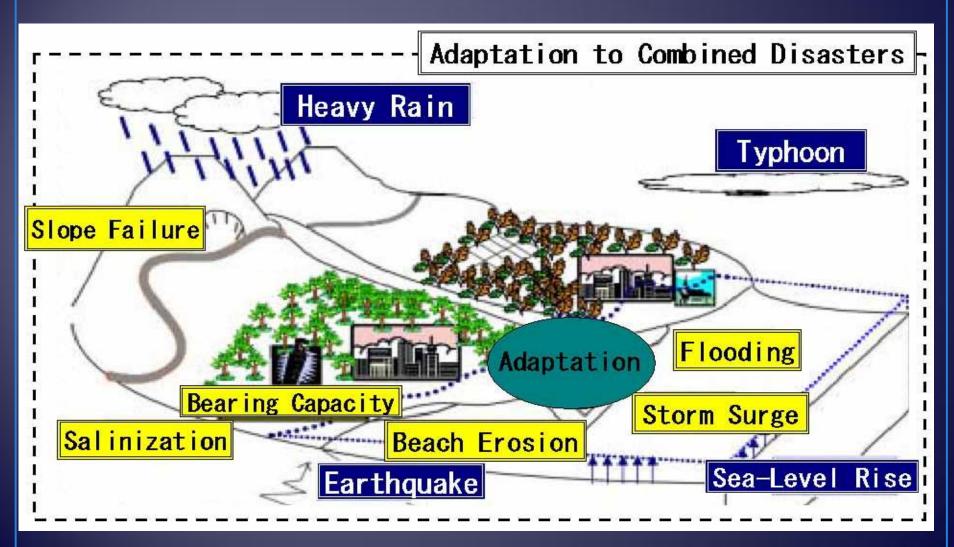
 Oregon businesses can only tolerate two to four weeks of disruption of essential services

Critical Service	Zone	Estimated Time to Restore Service
Electricity	Valley	1 to 3 months
Electricity	Coast	3 to 6 months
Police and fire stations	Valley	2 to 4 months
Drinking water and sewer	Valley	1 month to 1 year
Drinking water and sewer	Coast	1 to 3 years
Top-priority highways (partial restoration)	Valley	6 to 12 months
Healthcare facilities	Valley	18 months
Healthcare facilities	Coast	3 years

Asian Technical Committee 1 (ATC-1)

- "Mitigation and Adaptation to Climate Change-Induced Geodisasters" – <u>Inaugural meeting VNU, Hanoi Nov 2013</u>
- Prof Yasuhara, Co-chair from Ibaraki Univ. to lead special pub.
- 2014 event in Fukuoka
- Extreme events related to geotechnical engineering may be caused by climate change, particularly in Asia-Pacific Regions.
- However, IPCC has paid less attention to Geo-disaster aspects.
- Generally, most of natural disasters are thought to be water-related disasters, though "Geo-Engineering" provides the mitigations.


Vulnerable Coastal Deltas

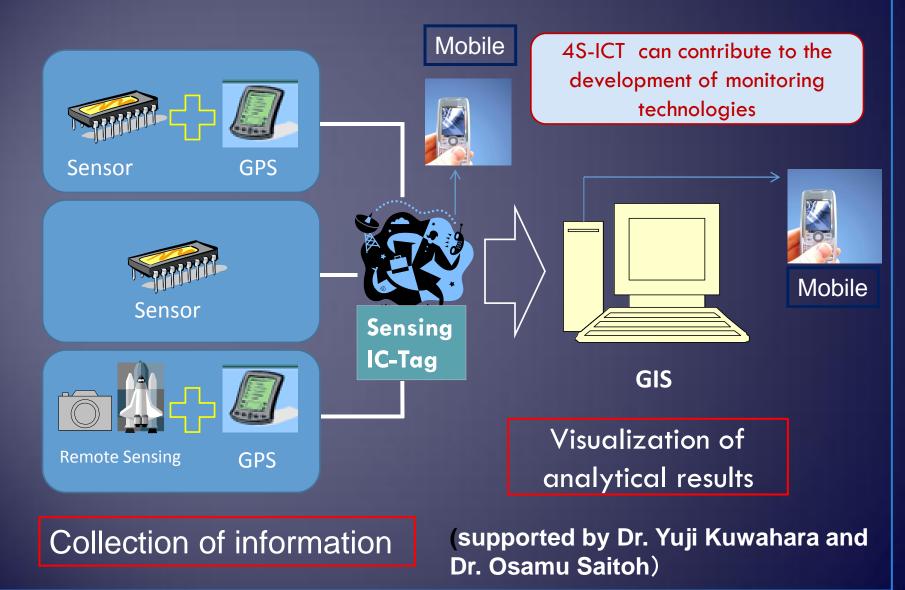

Figure TS.8. Relative vulnerability of coastal deltas as indicated by estimates of the population potentially displaced by current sea-level trends to 2050 (extreme >1 million; high 1 million to 50,000; medium 50,000 to 5,000) [B6.3]. Climate change would exacerbate these impacts.

(After IPCC AR 4, 2007)

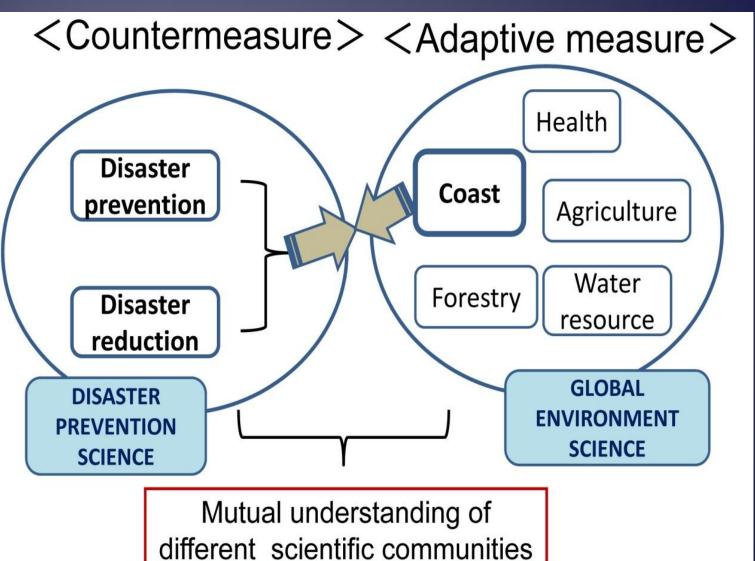
Compound Disasters

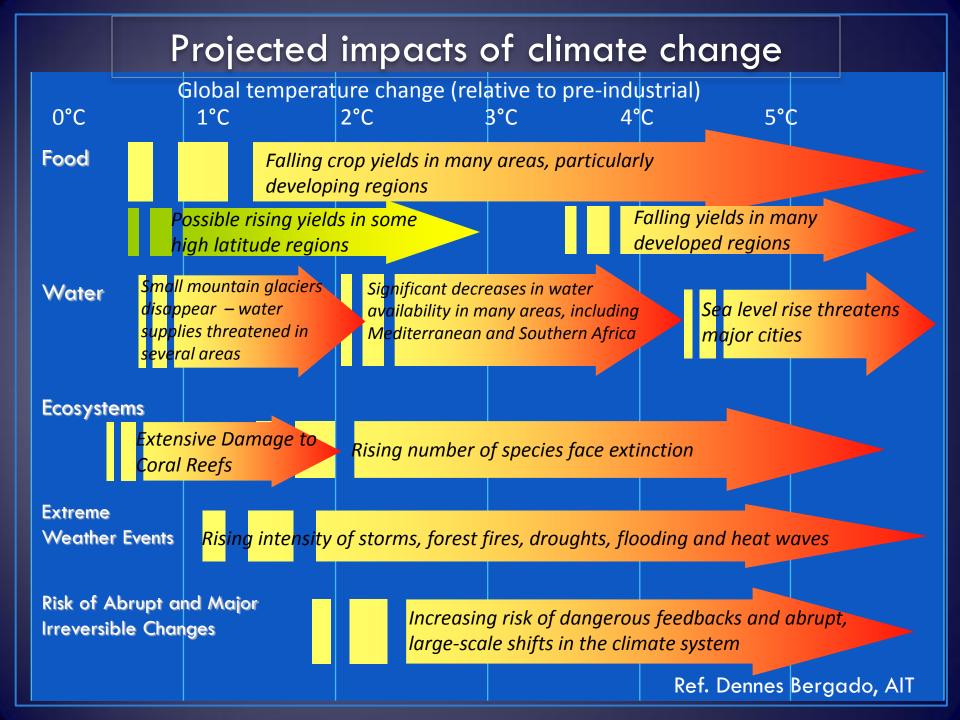
"Compound Disasters"

Comparative results from different approaches


	Researcher	Methodology	Results
Hydraulic approach	Kawagoe & Kazama (2009)	failure occurrence using climate change-induced	 Indicate locations where climate change-induced slope failure increases Specify areas where countermeasures are urgent
Geotechni- cal approach	Mitani (2012)	considering torrential	 Specify areas where global warming-triggered risk and economic loss by slope failure increases

Examples of geotechnical responsive measures


Response		Responsive measure	Geotechnical responsive measure	
		• Emission control of GHG	• Underground containment of GHG	
Mi	tigation	• Utilization of emissions trading	• Development of geo-materials to absorb GHG ^{*2}	
		• Development of renewable energy	•GHG absorption, fixation using thinned woods	
	Protection	•Control of external force triggering the	• Multiple protection using soil improvement and earth	
· · · ·	FIOIECtion	impacts of climate change	reinforcing techniques	
· ·	Accommodation	• Moderate response to climate change by	Construction of highly robust structures	
Adaptation		accepting the impacts to some degree	• Easily replaceable wall structures if damaged	
· ·	Retreat	•Retreat from regions undergoing impacts of climate change	• Early warning system utilizing ICT	
· ·			•Construction of robust shelters and refuges using	
· · · · · · · · · · · · · · · · · · ·			geosynthetics	
		• Early warning system based on future climate	Monitoring system using ICT	
Synergy of mitigation		prediction ^{*1}	• Early warning system using ICT	
and a	adaptation			
	auptation	• Development of inovative geo-materials	• Application of geo-materials to absorb GHG for	
			geo-hazard reduction	
(*1Tamura & Mimura: J. of IEICE, 93-1, 61-66, 2010, *2 Komine et al.: Geotechnical Eng. J., 7-1, 151-156, 2012)				


Ref. Dennes Bergado, AIT

Integrated ICT: 4S-Technology

Collaboration & cooperation between two sciences & engineering Ref. Dennes Bergado, AIT

Future outlook of climate change geo-issues

NGOs and Advocacy Groups devoted to public interests have multiplied exponentially. Thus, human well-being can be improved while protecting the environment such as:

- 1) Investments in ecosystem conservation
- 2) Management system to promote recovery of marine life
- 3) Watershed restoration schemes
- 4) Prevention of riverbank and coastal erosion
- 5) Risk assessments of lateral spreads, debris flows and landslides
- 6) Forecasts of flooding and flood protection schemes
- 7) Promote waste containment systems
- 8) Construct water supply reservoirs

Goals of ATC-1(FY2013 - FY2015)

- Collection of case studies
- Database construction
- Publication of book(s)

Develop Roadmap for ATC-1

- International Symposium
 ⇒The roles of geotechnical engineering in DRR should be clarified and serve as a strategy for performance goals
- Detailed activities will be led by Prof. Bergado

Conclusion

- Historical empirical approaches for scour are diverse.
- Tohoku data increased reliability of predictive liquefaction scour.
- New ASCE 7 tsunami chapter provides best practice procedure.
- Tsunami scour and erosion need more validation measurements.

Figure 4. General scour. Yamamoto-cho, Japan. Case TN-12.

- ASCE 24 flooding scour provisions need a general erosion procedure.
- DRR of hydraulics hazards can be advanced through geo-risk reduction: -elevated foundations, ground treatment & tsunami/coastal barriers
- FEMA is modeling financial benefits of code compliant foundations for DRR.

Hydraulics & Geotechnical collaboration for tsunami and floods provides a lens for assessing loss drivers and innovating balanced soft/hard mitigations. Thank you. mathew.francis@urs.com

