#### UTAH RESILIENCY WORKSHOP

Judith Mitrani-Reiser, Ph.D.

# Performance-Based Design: Buildings



ATC-58 procedures (Mitrani-Reiser) provide the following measures of occupancy interruption:

- The length of time necessary to conduct repairs,
- The need to procure items with long lead-times,
- The probability that the building will be placarded as unsafe for occupancy.





Volume 1 - Methodology

FEMA P-58-1 / September 2012





*Repair time* is the time needed to repair the earthquake damage and return the building to its pre-earthquake condition.



*Mobilization Time* is the delay before construction begins needed to assess damage and inspect building, time to consult with professional engineers, time for bidding process, time for clean-up, time to acquire items with long lead times.





**RC** Perimeter-Frame Design of Office Building



# Performance-Based Design: Summary

For some building occupancies (i.e., hospitals), the above procedures will not suffice in capturing the loss of important services:

- Need models that include infrastructure failures outside the building.
- Need occupancy-specific models that incorporate human infrastructure.
- Need systematic procedures for capturing building damage and loss of function over time in the field (eq reconnaissance).



# Resilience: functioning over time

$$Q_f(t) = \frac{\sum_n w_i \left(1 - \left(1 - R_i(t)\right)L_i(t)\right)}{\sum_n w_i}$$

| Variable | Definition                                                                           |
|----------|--------------------------------------------------------------------------------------|
| i        | Total number of functions                                                            |
| Wi       | Weight term, importance of the function                                              |
| Li(t)    | Loss of function, range 0-1 (no loss to total loss)                                  |
| Ri(t)    | Redistribution of function, range 0-1 (no redistribution to complete redistribution) |

# Resilience: functioning over time



# **Resilience-Based Design: Hospitals**



#### Resilience-Based Design: Hospitals Services by Floor



#### **Mechanical Floor**

- Level 7: Medical/Surgical, Acute Care for Elderly Palliative Care, Roof Garden
- Level 6: Medical/Surgical
- Level 5: Medical/Surgical Unit, Forensic Unit
- Level 4: Step Down Medical/Surgical, Step Down ICU, Dialysis
- Level 3: Intensice Care Units (ICU)
- Level 2: Labor and Delivery, Postpartum, Pediatrics, Neonatal Intensive Care
- Level 1: Emergency Department and Trauma Center
- **Basement 1**: Operating Rooms, Pre-op, Post Op, Endoscopy, Blood Bank
- **Basement 2**: Dietary. Pharmacy, Cardiologloy, Pulmonary, Diagnostic Imaging (Xray), Sterile Processing

#### **Resilience-Based Design: Hospitals**



200

250

300

350

0.2

0

0

50

100

150

Recovery Time (days)

~300 days until all hospital services are functional

# Resilience-Based Design: Summary

The above procedures, while helpful for individual buildings (nodes), will not suffice in capturing disaster impacts on important community institutions:

- Need models that include interdependent critical lifelines and supply chains.
- Need to capture the 'networked' system of buildings that provides specific community services.
- Need performance metrics that are relevant to the entire system and to the stakeholders managing these institutions.

# **Community Functioning Domains**

Disaster sociologists explain that not all community institutions mitigate disasters, and offer a short list of disaster-relevant institutions (Aguirre et al., 2005):

- Family
- Religion
- Politics
- Economy
- Medicine & Health
- Education
- Scientific Research
- Law & Courts
- Emergency Responders

- Communication
- Transportation
- Energy
- Food
- Water
- Entertainment
- Construction &
  - **Built Environment**
- Land Use



# Resilience of the entire ClbSS



# **Community Functioning Summary**

We're starting to scratch the surface of modeling the resilience of one ClbSS, but:

- Need holistic approach to capture community functioning over time.
- Need models that interface multiple scales (building institution community).
- Need to effectively use data that is collected over a wide range of time scales (e.g., census, tax assessors, reconnaissance, etc.).
- Need models that capture the complex interactions of many community institutions.



#### Community Functioning: CoPE-Well SD Model



# STIRM Research Summary

My research is focused on using engineering tools to answer important questions at the interface of physical and societal systems:

- Adapting PBEE methods to other hazards (e.g., FPHLPM)
- Designing RBEE tools to assess functionality of infrastructure that's critical to communities
- Modeling human interaction with compromised infrastructure (building evacuations; patient transfers)
- Disaster field studies (acute and longitudinal)
- Creating tools that are useful to practitioners (e.g., States of Oregon, Utah, and California; Ministries/Departments of Health; USGS; Arup; CIGIDEN)

#### **STIRM Research Summary**



# SENSOR TECHNOLOGY AND INFRASTRUCTURE RISK MITIGATION

GYJ CYCPI

#### Acknowledgements









#### Canterbury

District Health Board

Te Poari Hauora ō Waitaha











